Paper Title:
In vitro Investigation of Mesenchymal Stem Cells with Nanophase PLGA/HA Composite
  Abstract

Bone grafts have been used to fill bone defects caused by disease or trauma. The amount of autografts is limited and allogenic bone grafts may transmit diseases and cause immune responses. Numerous materials have been proposed and used as scaffolds for bone tissue reconstruction. In this study, we tested nanophase PLGA/HA composite with mesenchymal stem cells in vitro to examine its biological response and cellular activity. The nanophase composite was compared to conventional polystyrene on cytocompatibility by cell attachment, proliferation, alkaline phosphotase activity test and scanning electron microscopy (SEM) analysis. The results demonstrated that human mesenchymal cells showed more cell attachment and higher cell proliferation rate when growing on nanophase PLGA/HA composite than those growing on polystyrene alone. And the composite also promoted MSC cells differentiate to osteoblast cells as compared with control. It was suggested that the combination of bone marrow mesenchymal cells with artificial materials or differentiation factors may enhance bone formation and regeneration, nanophase PLGA/HA composite might therefore be a promising scaffold material for bone tissue substitute in clinical application.

  Info
Periodical
Key Engineering Materials (Volumes 330-332)
Main Theme
Edited by
Xingdong Zhang, Xudong Li, Hongsong Fan, Xuanyong Liu
Pages
1153-1156
DOI
10.4028/www.scientific.net/KEM.330-332.1153
Citation
J. Feng, Q. Zheng, Z. L. Shi, H. L. Jiang, W. Q. Yan, "In vitro Investigation of Mesenchymal Stem Cells with Nanophase PLGA/HA Composite", Key Engineering Materials, Vols. 330-332, pp. 1153-1156, 2007
Online since
February 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hajime Ohgushi, Shigeyuki Kitamura, Noriko Kotobuki, Motohiro Hirose, Hiroko Machida, Akira Oshima, Yasuhito Tanaka, Yoshinori Takakura
Abstract:Alumina ceramics have excellent mechanical and biocompatible properties, but are bioinert and hence have no bone-bonding properties. We took...
603
Authors: H.D. Cao, Yan Fei Tan, Xiao Yan Lin, Hong Song Fan, Xing Dong Zhang
Abstract:Glutaraldehyde was increasingly used to improve the stability of the collagen-based biomaterials as cross-linking. To investigate in vitro...
223
Authors: Yan Mei Chen, Ting Fei Xi, Yu Dong Zheng, Yi Zao Wan
Abstract:The nanocomposite of nano-hydroxyapatite/bacterial cellulose (nHA/BC) obtained by depositing in simulated body fluid (SBF), incorporating...
1011
Authors: Lia Rimondini, Federica Demarosi, Ismaela Foltran, Nadia Quirici
Chapter 3: Biomaterials
Abstract:Electrospinning technique is an efficient processing method to manufacture micro-and nanosized fibrous structures by electrostatic force for...
584
Authors: Miho Nakamura, Akiko Nagai, Kimihiro Yamashita
VI. Cell Studies and Cell-Material Interactions
Abstract:The osteoblast behaviors on the biomaterial substrates are recognized to play a fundamental role in osteoconduction process. The purpose of...
357