Paper Title:
Mechanical and Phase Stability of Zirconia Toughened Alumina
  Abstract

The JMM-ZTA, a kind of zirconia-toughened alumina, is a bearing ceramic newly developed for artificial joints. Although it has already been reported that mechanical strength and fracture toughness are higher in the JMM-ZTA than in alumina, the stability of the JMM-ZTA has not been studied in detail yet. In the present study, the stability of the JMM-ZTA with respect to mechanical strength and crystalline phases was examined under hydrothermal environment, and the results were compared with those of alumina. Both the 4-point bending strength and the fraction of monoclinic zirconia unchanged even after the aging test at 121°C for 300 h. These results indicate that the JMM-ZTA possesses quite excellent stability to be used as bearing material of artificial joints.

  Info
Periodical
Key Engineering Materials (Volumes 330-332)
Main Theme
Edited by
Xingdong Zhang, Xudong Li, Hongsong Fan, Xuanyong Liu
Pages
1267-1270
DOI
10.4028/www.scientific.net/KEM.330-332.1267
Citation
T. Nakanishi, M. Sasaki, J. Ikeda, F. Miyaji, M. Kondo, "Mechanical and Phase Stability of Zirconia Toughened Alumina", Key Engineering Materials, Vols. 330-332, pp. 1267-1270, 2007
Online since
February 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Dae Joon Kim, Deuk Yong Lee, Jung Suk Han
831
Authors: X.D. Li, Larry Wang, Tetsuhiko Onda, T. Akao, Motozo Hayakawa
Abstract:Centrifugal casting method was used to fabricate composites with graded structures in alumina-zirconia system. The composition profiles of...
293
Authors: Oleg Vasylkiv, Yoshio Sakka, Valeriy Skorokhod
2347
Authors: Eniko Volceanov, Ştefania Motoc, Adrian Volceanov, Rodica M. Neagu, Cristian Coman
2283
Authors: Oleg Vasylkiv, Yoshio Sakka, Valeriy Skorokhod
Abstract:The 0.75 to 3 mol% Y2O3-stabilized tetragonal ZrO2 and Al2O3/Y-TZP nano-composite ceramics with 0.2 to 0.7 wt% of alumina were produced by a...
615