Paper Title:
Stress and Crack Extension in Multi-Layered Ceramic Composites
  Abstract

It has been demonstrated, through theory and experiments, that compressive layers arrest large surface and internal cracks to produce a stress below which the material will not fail. This enables the materials to have a Threshold Strength. The stress intensity function, K, was derived for a crack sandwiched between two compressive layers. This function suggests that the threshold strength is proportional to the magnitude of the residual, compressive stress, the thickness of the compressive region, and inversely proportional to the distance between the compressive regions. All of these factors have been experimentally examined for laminar composites containing thin, compressive layers. Cracks that propagate straight though the layer obey the K function used to model this behavior. Crack bifurcation, which occurs at high compressive stresses, produces a larger threshold strength than predicted. Crack bifurcation is not fully understood. During the initial studies, differential thermal contraction during cooling from the densification temperature was used to develop the compressive stresses. A molar volume change to induce the compressive stress was also used to develop the compressive stresses. In one case, it was shown that the compressive stresses could arise when the compressive layer contained a material that underwent a structural phase transformation during cooling. In another, ion exchanged glass plates that are subsequently bonded together also produce a threshold strength. Factors that affect the threshold strength are reviewed.

  Info
Periodical
Edited by
Marc Anglada et al.
Pages
1-16
DOI
10.4028/www.scientific.net/KEM.333.1
Citation
F. F. Lange, "Stress and Crack Extension in Multi-Layered Ceramic Composites", Key Engineering Materials, Vol. 333, pp. 1-16, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yong Hui Hu, Yun Xin Wu, Guang Yu Wang, Jun Kang Guo
Abstract:Different distributed residual stresses were introduced by quenching and two shot-peening treatments on 7075 aluminum alloy. The residual...
241
Authors: Li Cheng Yang, Li Wei Ning, Jin Xiang Hu, Yi Ping Luo
Abstract:The three dimensional finite element model of the pavement has been built on the basis of elastic-plastic finite element method and the...
1380
Authors: Chong Lue Hua, Gui Cheng Wang, Hong Jie Pei, Gang Liu
Chapter 8: Modeling, Analysis, and Simulation of Manufacturing Processes
Abstract:Thermal stresses of grinding plays an important role on the fatigue and wear resistance of the component. A comprehensive analysis of thermal...
2211
Authors: Zhi Yong Han, Hua Zhang
Chapter 4: Engineering Mechanics
Abstract:Considering the thermally-growth oxide (TGO) that grows between top ceramic coating (TCC)and bond coat (BC) interface and surface morphology...
469
Authors: Hui Hui Zhao, Wen Fang Zhang
Chapter 3: Civil Engineering
Abstract:The application of ABAQUS finite element software non-linear finite element analysis of brick masonry walls with structural column. Build...
791