Paper Title:
Influence of the Cone Crack Geometry on the Strength Degradation
  Abstract

The presence of surface compressive residual stress in a laminated material enhance the resistance of the component by reducing the stress intensity factors acting on the cracks -either natural or artificial- existing in the surface. Fissures in the form of cone crack are often generated by blunt contact in service, that can affect the functionality as well as the strength of the material. In this work, a two-steps analysis of the effect of residual stresses on the geometry of cone crack and how this change in geometry influences the far-field strength of the material was performed by means of a Finite Elements model and of experimental observations. In the first part, an automatic incremental model was formulated, which allowed to establish the crack shapes that were used in the second part for simple four-points test models. It was observed that residual stresses change considerably the crack shape, with important implications in the design of contact-damage tolerance, and that this reflects on corresponding changes in the strength.

  Info
Periodical
Edited by
Marc Anglada et al.
Pages
255-258
DOI
10.4028/www.scientific.net/KEM.333.255
Citation
L. Ceseracciu, M. Anglada, E. Jiménez-Piqué, "Influence of the Cone Crack Geometry on the Strength Degradation", Key Engineering Materials, Vol. 333, pp. 255-258, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Yun Li, F.X. Che, D.A. Liu
Abstract:Multi-crack problems are deeply involved in rock-like material and rock engineering. In order to study the influences of lateral stress and...
1523
Authors: Zhong Guang Wang, H. Zhang, Q.S. Zang, Zhe Feng Zhang, Z.M. Sun
693
Authors: Ozgur Inan, Serkan Dag, Fazil Erdogan
Abstract:In this study the three – dimensional surface cracking of a graded coating bonded to a homogeneous substrate is considered. The main...
373
Authors: Zhi Ping Yin, Jiong Zhang, Jin Guo, Qi Qing Huang
Abstract:The finite element software ANSYS was employed to create a finite element model of the cracked wing beam integrated structure, and the stress...
101
Authors: M.R.M. Aliha, Mahdi Rezaei
Abstract:Crack growth path was investigated experimentally, numerically and theoretically using two test specimens subjected to pure mode II loading....
159