Paper Title:
Rate-Dependent Strain Generated Potentials in Ossointegrated Implant-Bone Composite
  Abstract

Osseointegration (OI) could be described as the modality for stable fixation of titanium implant to bone structure. The OI has become a realized phenomenon of importance in the dental and rehabilitation sciences since recently developed dentures and artificial limbs are directly attached to human skeleton by using osseointegrated (OI) implants. Previously, a study showed that bone strain generated potential (SGP) that is an electrical potential and considered to be generated by fluid flow in bone could be used as a parameter to examine the amount of OI on bone-implant interface. Since no study was performed to understand effects of loading rate changes on behavior of SGP for the bone-implant composite, rate dependent behavior of SGP was investigated in this study. Four different displacement rates, 100, 200, 500, and 1000 mm per minute were applied to the bone-implant composites. During the compression tests, SGPs were also measured. Magnitude of SGP was found to be significantly increased as the rate increased for OI bone-implant composite. In contrast, the time duration of SGP was decreased as the rate increased. These results could imply that the temporal SGP behavior of bone-implant composite is significantly affected by the loading rate.

  Info
Periodical
Key Engineering Materials (Volumes 334-335)
Edited by
J.K. Kim, D.Z. Wo, L.M. Zhou, H.T. Huang, K.T. Lau and M. Wang
Pages
1173-1176
DOI
10.4028/www.scientific.net/KEM.334-335.1173
Citation
J. H. Hong, Y. H. Park, S. O. Ko, "Rate-Dependent Strain Generated Potentials in Ossointegrated Implant-Bone Composite", Key Engineering Materials, Vols. 334-335, pp. 1173-1176, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jung Hwa Hong, Young Hwan Park, Sang Ok Ko, Soon Hyuck Lee, Gon Khang
Abstract:In this study, a minimally invasive assessment using bone strain generated potential (SGP) was developed to examine the amount of...
1082
Authors: Jung Hwa Hong, Sang Ok Ko, Soon Hyuck Lee
Abstract:"Osseo" refers to bone and "integration" refers to how a prosthesis can be integrated with the bone in residual limbs both arms and legs....
1569
Authors: Abdelilah Benmarouane, Helene Citterio-Bigot, T. Hansen, Pierre Millet, Alain Lodini
Abstract:In recent years, nanostructured coatings by Plasma Thermal Spraying (PTS) attracted intense interest due to their enhanced mechanical...
163
Authors: Daniel Lin, Qing Li, Wei Li, Michael V. Swain
Abstract:Currently, titanium dominates the dental implant materials due to its strength and bio-inerrability. The use of titanium implant had...
1035
Authors: Ana Cristina P. Machado, Marize Varella de Oliveira, Robson Pacheco Pereira, Yasmin R. Carvalho, Carlos Alberto Alves Cairo
Abstract:The osseointegration of porous titanium implants was evaluated in the present work. Implants were fabricated from ASTM grade 2 titanium by a...
179