Paper Title:
Effective Hyperelastic Behaviour of Fiber Reinforced Polymer Composite Materials
  Abstract

The macroscopic hyperelastic behavior of fiber reinforced polymer composites is studied using the micromechanical model and finite deformation theory. It is assumed that the fiber and matrix are hyperelastic media and undergoing finite deformation. The local fields of a representative volume element are calculated by the hyperelastic finite element method. Then an averaging procedure is used to find the homogenized stress and strain and the macroscopic curves of stress-strain are obtained. The several microstructural parametric effects on the macroscopic hyperelastic behavior are considered. The numerical examples show the hyperelastic behavior and deformation of the composites.

  Info
Periodical
Key Engineering Materials (Volumes 334-335)
Edited by
J.K. Kim, D.Z. Wo, L.M. Zhou, H.T. Huang, K.T. Lau and M. Wang
Pages
473-476
DOI
10.4028/www.scientific.net/KEM.334-335.473
Citation
Q. S. Yang, F. Xu, "Effective Hyperelastic Behaviour of Fiber Reinforced Polymer Composite Materials", Key Engineering Materials, Vols. 334-335, pp. 473-476, 2007
Online since
March 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hyo Jin Kim, Do Won Seo, Jae Kyoo Lim, Toru Fujii
417
Authors: Sabbah Ataya, Marcus Korthäuer, Essam El Magd
Abstract:Copper reinforced by tungsten particles has high potential applications in the fields of electronics and electric contacts where high...
1205
Authors: Ying Cao, Li Pan
Chapter 2: Materials Science
Abstract:In the present investigation, resin transfer molding has been used to produce high quality carbon fiber epoxy composites and...
753
  | Authors: Li Li Yang, Yong Quan Zhang, Yong Ge, Qing Hua Zhu, Ce Zhang
Chapter 3: Advanced Technique in Road Engineering and Material Science
Abstract:Structural health monitoring of concrete infrastructures has attracted enormous attention due to the brittle nature of concrete. In this...
224