Paper Title:
Finite Element Method Predicts the Distribution of Cutting Temperature in Diamond Turning
  Abstract

In this paper, a coupled thermo-mechanical FE model is proposed to simulate the cutting temperature’s distribution produced in diamond turning. Simulated results indicate that the heat converting from plastic work has prominent effects on the distribution shape of cutting temperature field, and with an increment in cutting velocity, the locating site of maximal cutting temperature shifts from the contact area between tool tip and chip root to the contact area between rake face and chip. Cutting edge radius has minute influence on the distribution shape of cutting temperature field, but the bigger the cutting edge radius is, the higher the maximum cutting temperature in cutting region. Rake angle also has slight effects on the maximal temperature when it is more than 10○. While clearance angle reaches to 6○, the maximum cutting temperature approaches the smallest.

  Info
Periodical
Edited by
Shen Dong and Yingxue Yao
Pages
100-105
DOI
10.4028/www.scientific.net/KEM.339.100
Citation
W. J. Zong, D. Li, T. Sun, K. Cheng, "Finite Element Method Predicts the Distribution of Cutting Temperature in Diamond Turning", Key Engineering Materials, Vol. 339, pp. 100-105, 2007
Online since
May 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Han Ul Lee, Dong Woo Cho
Abstract:For effective rough milling, an optimized criterion is required to select the feedrate. In this study, a method to obtain the most...
43
Authors: Xue Song Han
Abstract:Exit fracture, the main factor influencing the precision of workpiece, has already been extensively studied. In the case of nanometric...
1833
Authors: Yi Wan, Zhan Qiang Liu, Xing Ai
Abstract:Five-axis milling is widely used in machining of complex surfaces parts. Part quality and productivity are extremely affected by cutting...
2049
Authors: Jun Zhou, Jian Feng Li, Jie Sun
Abstract:In this paper, the micro-scale machining characteristics of a non-ferrous structural alloy, aluminum 7050-T7451 is investigated through a...
657
Authors: Atanu Das, Partha Pratim Saha, Santanu Das
Chapter 8: Material Processing Technology
Abstract:Shaping Burrs are produced at the edge of a workpiece when a cutter exits it. It causes difficulties in manufacturing and assembly stages....
1602