Paper Title:
Microscopic Interlaminar Stress Analysis of CFRP Cross-Ply Laminate Using a Homogenization Theory
  Abstract

Microscopic stress distributions at an interlaminar area in a CFRP cross-ply laminate are analyzed three-dimensionally using a homogenization theory in order to investigate microscopic interaction between 0°- and 90°-plies. It is first shown that a cross-ply laminate has a point-symmetric internal structure on the assumption that each ply in the laminate has a square array of long fibers. Next, the point-symmetry is utilized to reduce the domain of homogenization analysis by half. Moreover, the substructure method is combined with the homogenization theory for reducing consumption of computational resources. The present method is then employed for analyzing stress distributions at an interlaminar area in a carbon fiber/epoxy cross-ply laminate under in-plane off-axis tensile loading. It is thus shown that microscopic shear stress significantly occurs at the interface between 0°- and 90°-plies. It is also shown that the microscopic interaction between two plies is observed only in the vicinity of the interface.

  Info
Periodical
Key Engineering Materials (Volumes 340-341)
Edited by
N. Ohno and T. Uehara
Pages
1043-1048
DOI
10.4028/www.scientific.net/KEM.340-341.1043
Citation
T. Matsuda, D. Okumura, N. Ohno, M. Kawai, "Microscopic Interlaminar Stress Analysis of CFRP Cross-Ply Laminate Using a Homogenization Theory", Key Engineering Materials, Vols. 340-341, pp. 1043-1048, 2007
Online since
June 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Kenji Wakashima, T. Nishida, Tomonari Inamura, Hideki Hosoda
Abstract:A new route to designing smart active composites, which deals with fiber-reinforced in-plane anisotropic piezoelectric lamina and laminates,...
2083