Paper Title:
Dynamic Mechanical Behaviors of Aluminium Foam Filled Circular Tubes under Transverse Compressive Load
  Abstract

The experimental studies on the static and dynamic mechanical properties of aluminium foam material are presented first. Finite element models of four structures, including circular tube filled and bonded with aluminium foam, circular tube filled but unbonded with aluminium foam, single aluminium foam column and empty aluminium tube, under dynamic transverse compression are established by FEMB code. The dynamic mechanical behaviors of the structures are analyzed using LS-DYNA finite element code. The simulating results at certain cases are compared with experimental measurements and the satisfying consistency confirmed the validity of the model. The further numerical simulations are carried on the dynamic mechanical behaviors of four structures with outer tubes of different wall-thickness. It is found that aluminium foam filling can greatly improve the load-bearing capacity and energy-absorbing efficiency of structures. On the other hand, the effect of the aluminium outer tube on the structure is obvious compared with single aluminium foam column, in spite of the foam core and the tube are bonded together or unbonded. Another result can be seen that the bonding between the foam and outer tube affects the structure weakly for both thinner and thicker tubes. Finally, the simulating results show that the thicker wall of tube can improve the load-bearing capacity and energy-absorbing ability of the structure.

  Info
Periodical
Key Engineering Materials (Volumes 340-341)
Edited by
N. Ohno and T. Uehara
Pages
397-402
DOI
10.4028/www.scientific.net/KEM.340-341.397
Citation
X. Q. Zhang, X. Q. Huang, Y. P. Liu, L. Q. Tang, S. L. Liang, "Dynamic Mechanical Behaviors of Aluminium Foam Filled Circular Tubes under Transverse Compressive Load", Key Engineering Materials, Vols. 340-341, pp. 397-402, 2007
Online since
June 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Nuno Peixinho, António Pinho
Abstract:This study presents results of denting resistance of 6111-T4 aluminium alloy. Experimental results of dynamic denting were compared with...
889
Authors: Emilien Durif, Wen Yi Yan, Yasuo Yamada, Cui E Wen
629
Authors: Francesco Caputo, Giuseppe Lamanna, Alessandro Soprano
Abstract:In the present paper the authors refer about a series of experimental tests, where an aluminium alloy square tube, filled with an aluminium...
561