Paper Title:

Reduction of Stages in Multi-Stage Metal Forming Process Based on Numerical Optimization in Conjunction with FE Simulation

Periodical Key Engineering Materials (Volumes 340 - 341)
Main Theme Engineering Plasticity and Its Applications
Edited by N. Ohno and T. Uehara
Pages 767-772
DOI 10.4028/
Citation Ryutaro Hino et al., 2007, Key Engineering Materials, 340-341, 767
Online since June 2007
Authors Ryutaro Hino, Akihiko Sasaki, Fusahito Yoshida, Vassili V. Toropov
Keywords Finite Element Analysis (FEA), Multi-Stage Forming Process, Numerical Optimization, Stage Reduction
Price US$ 28,-
Article Preview
View full size

In this study, a new simulation-based design technique for multi-stage metal forming process is developed with special emphasis on reduction of stages in the process. The developed design technique is an iterative design optimization, which is based on response-surface-based numerical optimization and finite element analysis of the process. The design procedure starts with the initial rough process design. To eliminate one stage in the multi-stage process, the new optimum process design is determined based on the former process design by using numerical optimization in conjunction with FE simulation. This design optimization step is repeated, reducing the stages one by one, until the possible minimum number of stages is reached. The developed design technique is applied to stage reduction of a 3-stage axisymmetric forging process of aluminum billet. We can confirm that a new 2-stage process design is determined successfully and the developed design optimization technique is effective to reduce stages in multi-stage forming process.