Paper Title:
Effects of Mechanical Stress on the In Vitro Degradation of Porous Composite Scaffold for Bone Tissue Engineering
  Abstract

In bone tissue engineering, porous scaffolds served as the temporary matrix are often subjected to mechanical stress when implanted in the body. Based on this fact, the goal of this study was to examine the effects of mechanical loading on the in vitro degradation characteristics and kinetics of porous scaffolds in a custom-designed loading system. Porous Poly(L-lactic acid)/β-Tricalcium Phosphate (PLLA/β-TCP) composite scaffolds fabricated by using solution casting/compression molding/particulate leaching technique (SCP) were subjected to degradation in simulated body fluid (SBF) at 37°C for up to 6 weeks under the conditions: with and without static compressive loading, respectively. The results indicated that the increase of the porosity and decrease of the compressive strength under static compressive loading were slower than that of non-loading case, and so did the mass loss rate. It might be due to that the loading retarded the penetration, absorption and transfer of simulated body fluid. These data provide an important step towards understanding mechanical loading factors contributing to degradation.

  Info
Periodical
Key Engineering Materials (Volumes 342-343)
Edited by
Young-Ha Kim, Chong-Su Cho, Inn-Kyu Kang, Suk Young Kim and Oh Hyeong Kwon
Pages
273-276
DOI
10.4028/www.scientific.net/KEM.342-343.273
Citation
Y. Q. Kang, G. F. Yin, L. Luo, K. F. Wang, Y. Zhang, "Effects of Mechanical Stress on the In Vitro Degradation of Porous Composite Scaffold for Bone Tissue Engineering", Key Engineering Materials, Vols. 342-343, pp. 273-276, 2007
Online since
July 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Kyung Sik Oh, Soo Ryong Kim
Abstract:Effect of the starting compostion was studied in bone cement containg coarse b-tricalcium phosphate (b-TCP) granules which was very dense and...
141
Authors: J.W. Paek, Beom Seob Kim, Deug Joong Kim
Abstract:Ceramic foams containing MoSi2 were prepared by a self-blowing process of poly-silsesquioxane with MoSi2 as filler. Ceramic foams prepared by...
129
Authors: Sirirat T. Rattanachan, Charussri Lorpayoon, Piyanan Bunpayun
Abstract:Crystallized apatite behaved to plaster of Paris was prepared by the chemical method. Apatite powder was mixed with chitosan. In this study,...
839
Authors: Szilvia Eosoly, Stefan Lohfeld, Dermot Brabazon
Abstract:Selective laser sintering (SLS) has the potential to fabricate bioresorbable polymer / ceramic composite scaffolds with pre-designed external...
659
Authors: Joo Eon Park, Mitsugu Todo
Abstract:Novel reinforcements such as beam, film, and porous frame were developed to improve the mechanical properties of poly(L-lactide) (PLLA)...
303