Paper Title:
Prediction of Intraosseous Pressure Behavior to Understand Strain Generated Potential near Osseointegrated Bone and Implant Composite
  Abstract

Osseointegration (OI) could be described as the modality for stable fixation of titanium implant to bone structure. The OI has become a realized phenomenon of importance in the dental and rehabilitation sciences since recently developed dentures and artificial limbs are directly attached to human skeleton by using osseointegrated implants. Previously, a study showed that bone strain generated potential (SGP) that is an electrical potential and considered to be generated by fluid flow in bone could be used as a parameter to examine the amount of OI on implant-bone interface. SGP generation is known to require intraosseous fluid flow related with generations of pore pressure gradient in bone. Therefore, SGP would interact with properties determining interstitial fluid flow characteristics such as viscosity, velocity, flow path directions, and interstitial fluid flow boundary conditions. Since interstitial fluid flow characteristics in bone are governed by pore pressure gradient, it could be possible to predict SGP indirectly through the prediction of pore pressure generation in bone. The aim of this study is to predict the distribution of pore pressure in OI bone-implant composite representing a completely osseointegrated rabbit tibia-titanium implant composite. The theoretical background of this prediction is based on the poroelasticity of 2-phase material that grounds on fluid flow and behavior of cortical bone material. In this study, we constructed a finite element (FE) model of the composite from images of micro-CT scanning. In the next step, we examined analysis of the FE model about pore pressure by using ABAQUS. In this analysis, the constitutive behavior was externally computed by utilizing a user subroutine. The results showed the different spatial distributions of pore pressure in the composite. The magnitudes of pore pressure were found to be significantly increased when the position was approached for the interface of implant-bone. Further analytical study is required to fully understand relationships between SGP and pore pressure distributions in OI bone-implant composite materials.

  Info
Periodical
Key Engineering Materials (Volumes 342-343)
Edited by
Young-Ha Kim, Chong-Su Cho, Inn-Kyu Kang, Suk Young Kim and Oh Hyeong Kwon
Pages
909-912
DOI
10.4028/www.scientific.net/KEM.342-343.909
Citation
S. K. Min, J. H. Hong, S. O. Ko, "Prediction of Intraosseous Pressure Behavior to Understand Strain Generated Potential near Osseointegrated Bone and Implant Composite", Key Engineering Materials, Vols. 342-343, pp. 909-912, 2007
Online since
July 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Xue Jun Wang, R. Wang, J.M. Luo, Ji Yong Chen, Xing Dong Zhang
Abstract:It is important to obtain mechanical coupling between dental implants and bone, because the lack of mechanical coupling may cause bone loss...
657
Authors: Jung Hwa Hong, Young Hwan Park, Sang Ok Ko, Soon Hyuck Lee, Gon Khang
Abstract:In this study, a minimally invasive assessment using bone strain generated potential (SGP) was developed to examine the amount of...
1082
Authors: Jung Hwa Hong, Young Hwan Park, Sang Ok Ko
Abstract:Osseointegration (OI) could be described as the modality for stable fixation of titanium implant to bone structure. The OI has become a...
1173
Authors: Jung Hwa Hong, Sang Ok Ko, Soon Hyuck Lee
Abstract:"Osseo" refers to bone and "integration" refers to how a prosthesis can be integrated with the bone in residual limbs both arms and legs....
1569
Authors: Daniel Lin, Qing Li, Wei Li, Michael V. Swain
Abstract:Currently, titanium dominates the dental implant materials due to its strength and bio-inerrability. The use of titanium implant had...
1035