Paper Title:
Stress Analysis during Crack-Crazing Patterns Interactions: A Mathematical Approach
  Abstract

In this study, interactions between a main crack and a surrounding layer of crazing patterns are considered. Analysis of the stress field distribution induced during these interactions is based on the resolution of some differential equations along with appropriate boundary conditions and the use of a numerical approach. These equations are established according to Mohr’s criteria since the craze growth occurs along directions parallel to the minor principal stress axis. Because this damage can constitute an important toughening mechanism, the mode I stress intensity factor (SIF) is employed to quantify the effects on a crack of the damage consisting of crazing patterns. It is proven, herein, that crazes closer to the main crack dominate the resulting interaction effect and reflect an antishielding of the damage while a reduction constitutes a material toughness.

  Info
Periodical
Key Engineering Materials (Volumes 345-346)
Edited by
S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim
Pages
1617-1620
DOI
10.4028/www.scientific.net/KEM.345-346.1617
Citation
M. Chabaat, H. Seddiki, "Stress Analysis during Crack-Crazing Patterns Interactions: A Mathematical Approach", Key Engineering Materials, Vols. 345-346, pp. 1617-1620, 2007
Online since
August 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhen Qing Wang, Ji Bin Wang, Wen Yan Liang, Juan Su
Abstract:The viscosity of material is considered at propagating crack-tip. Under the assumption that the artificial viscosity coefficient is in...
817
Authors: Masanori Kikuchi, Yoshitaka Wada, Masafumi Takahashi, Yu Long Li
Abstract:Fatigue crack growth under mixed mode loading conditions is simulated using S-FEM. By using S-FEM technique, only local mesh should be...
133
Authors: Jun Ru Yang, Zhao Qian Li, Chuan Zhen Huang, Quan Wei Wang
Abstract:Basing on the theoretical study on the stress intensity factor (SIF) of the crack inclined across the interface of the cermet cladding part,...
213
Authors: Jun Ru Yang, Gong Ling Chen, Li Li Zhang, Jing Sun
VI. Analytical and Numerical Methods for Materials Processing
Abstract:Based on the theoretical study on the tip stress intensity factor (SIF) of the crack normal to and dwelling on the interface, using the...
525