Paper Title:
Achieving Both Powder Consolidation and Grain Refinement for Bulk Nanostructured Materials by Equal-Channel Angular Pressing
  Abstract

Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both full density and grain refinement of metallic powders. ECAP (Equal-Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain and strain rate distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method in conjunction with a pressure dependent material yield model. Effects of processing parameters on densification and density distributions were investigated.

  Info
Periodical
Key Engineering Materials (Volumes 345-346)
Edited by
S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim
Pages
173-176
DOI
10.4028/www.scientific.net/KEM.345-346.173
Citation
S. C. Yoon, D. M. Nghiep, S. I. Hong, Z. Horita, H. S. Kim, "Achieving Both Powder Consolidation and Grain Refinement for Bulk Nanostructured Materials by Equal-Channel Angular Pressing ", Key Engineering Materials, Vols. 345-346, pp. 173-176, 2007
Online since
August 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Rimma Lapovok
Abstract:Equal Channel Angular Extrusion (ECAE) has become a very popular tool for studying the evolution of microstructure and properties under...
37
Authors: Gui Qing Chen, Gao Sheng Fu, Wen Duan Yan, Chao Zeng Cheng, Ze Chang Zou
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0...
306
Authors: Wojciech Wajda, Henryk Paul
Abstract:The paper describes the mechanism of deformation at 77 K of pure aluminum bicrystals of different grain orientations. The following...
108
Authors: Xu Dong Zhou, Xiang Ru Liu
Chapter 3: Materials Forming, Machining and Joining
Abstract:The researches of non-oriented silicon steel are mainly focused on the effect of main processing parameters on the microstructure and...
1468
Authors: Liang Chu, Li Jun Shi, Yan Bi, Da Sen Bi
Abstract:In this paper, the nosing process of metal tube with a conical die is investigated using the finite element method, and a series of...
1444