Paper Title:
Accommodation of Grain Boundary Sliding in AZ31 Alloy
  Abstract

Mg alloys could be the lightest alloys among the industrially applicable engineering alloys. Since wrought Mg alloy has limited applications due to the poor formability, casting is currently the main processing technique to fabricate Mg components even though wrought alloys are superior in terms of mechanical properties and reliability. While a lot of research and development has been focused on warm forming under the temperature condition of around 250°C where more formability could be expected, superplastic forming could be another way to get over the low formability of Mg alloys. Like other superplastic materials grain boundary sliding is the main deformation mechanism of Mg superplasticity. Accommodation of stress concentration around triple point of grain boundary should be done favorably if grain boundary sliding continues without any fracture. In the present study, superplastic behavior of AZ31 alloys with several grain sizes was examined firstly. Accommodation of grain boundary sliding of AZ31 alloy would be discussed on the basis of grain morphology and texture evolution after tensile deformation.

  Info
Periodical
Key Engineering Materials (Volumes 345-346)
Edited by
S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim
Pages
581-584
DOI
10.4028/www.scientific.net/KEM.345-346.581
Citation
Y. N. Kwon, Y. S. Lee, S.W. Kim, J. H. Lee, "Accommodation of Grain Boundary Sliding in AZ31 Alloy", Key Engineering Materials, Vols. 345-346, pp. 581-584, 2007
Online since
August 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chang Liang Li, Hua Ding, Yong Qing Zhao, Lian Zhou
Abstract:Superplastic forming provides a good way for Ti alloys which are usually difficult to be deformed. Ti75 alloy with a nominal composition of...
2969
Authors: Diana Yuzbekova, Anna Mogucheva, Rustam Kaibyshev
Chapter 4: Microstructure Refinement
Abstract:The ultrafine grained structure of an AA5024 with an average size of ∼0.7 μm was produced by equal-channel angular pressing (ECAP) at 300°C...
422
Authors: Ivan Zuiko, Marat Gazizov, Rustam Kaibyshev
Chapter 3: Superplastic Materials
Abstract:A commercial AA2519 alloy with a chemical composition of Al-5.64Cu-0.33Mn-0.23Mg-0.15Zr (in wt. %) was subjected to two-step thermomechanical...
278