Paper Title:
Modeling of Maximum Spread Variation of Workpiece under High Speed Deformation in Rod Rolling Process
  Abstract

A maximum spread model dependent on rolling speed is proposed for rod rolling process following the analysis of deformation behavior of steel under compression and four-pass continuous high speed rod rolling test. Results reveal that amount of spread depends on a region which restricts plastic flow of workpiece during deformation. Increasing rolling speed (strain rate) leads to decrement of friction coefficient and, in turn, enlarge deformation-restricted region in the workpiece and consequently reduce amount of spread during deformation. Hence, the rolling speed dependent spread model could be expressed in terms of flow stress, which is a function of strain, strain rate and temperature and finally the model is proposed in a concise form.

  Info
Periodical
Key Engineering Materials (Volumes 345-346)
Edited by
S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim
Pages
967-970
DOI
10.4028/www.scientific.net/KEM.345-346.967
Citation
Y. S. Lee, "Modeling of Maximum Spread Variation of Workpiece under High Speed Deformation in Rod Rolling Process ", Key Engineering Materials, Vols. 345-346, pp. 967-970, 2007
Online since
August 2007
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: B.J. Xiao, Cheng Yong Wang, Ying Ning Hu, Yue Xian Song
Abstract:A two-dimensional orthogonal thermal-mechanical finite element model by Deform2D finite element analysis software is established in the...
590
Authors: Hong Rui Ao, Deng Pan, Hong Yuan Jiang
Thin Films
Abstract:The contact at head/disk interface in hard disk drives subject to an external shock has been studied using the finite element method. A rigid...
2339
Authors: Ji Cai Kuai
Chapter 3: Chemical and Biomedical Engineering
Abstract:The dynamic minimum thickness of cut for the ultra-precision machining surface quality is important influence. Between tool and the workpiece...
1246
Authors: Xin Wu Ma, Guo Qun Zhao, Wen Juan Li
Chapter 5: Materials Processing and Chemical Technologies
Abstract:A new method for determination of friction coefficient in sheet metal forming of Mg alloy AZ31B is presented in this paper. The method is...
430
Authors: Li Li Huang, Xiao Yang Lu, Xiang Wei Zhang
Chapter 2: Mechanics Engineering, Dynamics and Systems, Manufacturing Design Applications
Abstract:The numerical simulation of the ironing process of deep cup shaped part was conducted by finite element software Deform 3D. The influences of...
191