Paper Title:
Automatic 3-D Crack Propagation Calculations in Industrial Components: A Pure Hexahedral versus a Combined Hexahedral-Tetrahedral Approach
  Abstract

In recent years, increased loading and low weight requirements have led to the need for automatic crack tracing software. At MTU a purely hexahedral code has been developed in the nineties for Mode-I applications. It has been used extensively for all kinds of components and has proven to be very flexible and reliable. Nevertheless, in transition regions between complex components curved cracks have been observed, necessitating the development of mixed-mode software. Due to the curvature of the crack faces, purely hexahedral meshes are not feasible, and therefore a mixture of hexahedral elements at the crack tip, combined with tetrahedral in the remaining structure has been selected. The intention of the present paper is to compare both methods and to point out the strength and weaknesses of each regarding accuracy, complexity, flexibility and computing time. Furthermore, difficulties arising from the out-of-plane growth of the crack such as the determination of the crack propagation direction are discussed.

  Info
Periodical
Key Engineering Materials (Volumes 348-349)
Edited by
J. Alfaiate, M.H. Aliabadi, M. Guagliano and L. Susmel
Pages
45-48
DOI
10.4028/www.scientific.net/KEM.348-349.45
Citation
G. Dhondt, "Automatic 3-D Crack Propagation Calculations in Industrial Components: A Pure Hexahedral versus a Combined Hexahedral-Tetrahedral Approach", Key Engineering Materials, Vols. 348-349, pp. 45-48, 2007
Online since
September 2007
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Yun Li, F.X. Che, D.A. Liu
Abstract:Multi-crack problems are deeply involved in rock-like material and rock engineering. In order to study the influences of lateral stress and...
1523
Authors: Masanori Kikuchi, Yoshitaka Wada, Masafumi Takahashi, Yu Long Li
Abstract:Fatigue crack growth under mixed mode loading conditions is simulated using S-FEM. By using S-FEM technique, only local mesh should be...
133
Authors: Yan Hua Zhao, Hua Zhang, Wei Dong
Abstract:The wedge splitting (WS) test is now a promising method to perform stable fracture mechanics tests on concrete-like quasi brittle materials....
425
Authors: Jun Ru Yang, Gong Ling Chen, Li Li Zhang, Jing Sun
VI. Analytical and Numerical Methods for Materials Processing
Abstract:Based on the theoretical study on the tip stress intensity factor (SIF) of the crack normal to and dwelling on the interface, using the...
525