Paper Title:
Propagation of Fatigue Cracks Emanating from Sharp Notches under Different Loading Direction
  Abstract

The present paper is aimed at investigating the behaviour of fatigue cracks emanating from sharp V-shaped notches. To this purpose, several tests has been conducted on Al-7075-T651 notched specimens using a servohydraulic machine by changing the directions and levels of the applied load. The crack growth have been interpreted on the basis of a linear elastic fracture mechanics approach by adopting a weight function derived by the authors for the calculation of the stress intensity factors (SIFs) of inclined edge-cracks emanating from V-shaped notches.

  Info
Periodical
Key Engineering Materials (Volumes 348-349)
Edited by
J. Alfaiate, M.H. Aliabadi, M. Guagliano and L. Susmel
Pages
461-464
DOI
10.4028/www.scientific.net/KEM.348-349.461
Citation
M. Benedetti, M. Beghini, L. Bertini, V. Fontanari, "Propagation of Fatigue Cracks Emanating from Sharp Notches under Different Loading Direction", Key Engineering Materials, Vols. 348-349, pp. 461-464, 2007
Online since
September 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Yun Li, F.X. Che, D.A. Liu
Abstract:Multi-crack problems are deeply involved in rock-like material and rock engineering. In order to study the influences of lateral stress and...
1523
Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: Masanori Kikuchi, Yoshitaka Wada, Masafumi Takahashi, Yu Long Li
Abstract:Fatigue crack growth under mixed mode loading conditions is simulated using S-FEM. By using S-FEM technique, only local mesh should be...
133
Authors: M.R.M. Aliha, Mahdi Rezaei
Abstract:Crack growth path was investigated experimentally, numerically and theoretically using two test specimens subjected to pure mode II loading....
159