Paper Title:
Fatigue Life Analysis of Al 8090 Helicopter Fuselage Panels
  Abstract

Considering the aerospace structures, the advantages of Al-Li alloys in comparison with conventional aluminium alloys comprise relatively low densities, high elastic modulus, excellent fatigue and toughness properties, and superior fatigue crack growth resistance. Unfortunately, these alloys have some disadvantages due to highly anisotropic mechanical properties and due to a very high crack growth rate for microstructurally short cracks. This could mean relatively early cracking in high stress regions such as rivet holes in helicopter fuselage panels. Consequently a more accurate approach in fatigue life analysis is requested. Considering that the 8090 T81 aluminium alloy has been widely used in an helicopter structure, in particular in the bolted connection between the stringers and the modular joint frame in the rear of the fuselage, it is extremely important to found a reliable procedure for the fatigue life assessment of the component. Thus, using the results of experimental tests made on panel specimens, a FE general model and two submodels of the critical zone (involved in fatigue damage during the tests) have been modelled in order to investigate the complex state of stress near the rivets holes. These stress values obtained have been elaborated for a fatigue assessment.

  Info
Periodical
Key Engineering Materials (Volumes 348-349)
Edited by
J. Alfaiate, M.H. Aliabadi, M. Guagliano and L. Susmel
Pages
637-640
DOI
10.4028/www.scientific.net/KEM.348-349.637
Citation
M. Giglio, A. Manes, M. Fossati, "Fatigue Life Analysis of Al 8090 Helicopter Fuselage Panels ", Key Engineering Materials, Vols. 348-349, pp. 637-640, 2007
Online since
September 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Tomáš Denk, Vladislav Oliva, Aleš Materna
Abstract:A two-parameter constraint-based fracture mechanics approach is used to explain the effect of the constraint on the apparently anomalous...
307
Authors: F. Ricci, F. Franco, Nicola Montefusco
Abstract:In this paper, the mechanisms of propagation of the damage in aluminum panels repaired with bonded composite patches of different mechanical...
597
Authors: Shabnam Hosseini, Mohammad Bagher Limooei
Chapter 1: Metal Materials
Abstract:In this research, fatigue behaviour of Ti-6Al-4V alloy was investigated for smooth and notched specimens with stress concentration...
7
Authors: Yu E Ma, Bao Qi Liu, Zhen Qiang Zhao
Chapter 2: Material Science and Engineering
Abstract:Al-Li alloy 2198-T8 was used in the fuselage application. Integral fuselage panels were joined by double friction stir welds. Fatigue tests...
651
Authors: De Zhi Li, Li Han, Zong Jin Lu, Martin Thornton, Mike Shergold
Chapter 5: Deformation, Stress Analysis, and Vibration
Abstract:Currently, self-piercing riveting (SPR) is a major technology used by manufacturers to join aluminium body structures to reduce vehicle...
398