Paper Title:
An Open Crack Model for Vibration Simulation of Beam Structures by Transfer Matrix Method
  Abstract

Crack detection of critical beam structures such as bridges and aircraft wings by vibration monitoring is based on understanding how a crack affects the vibration characteristics of a beam structure. Transfer matrix method is a convenient, effective, and hence widely used approach to beam vibration analysis, but a crack in the beam makes this method ineffective. This paper proposes an open crack model that simulates the local stiffness reduction effect of a transverse crack by a rectangular slot to make the transfer matrix method able to analyze vibrations of a cracked beam. The depth of the slot is identical to the depth of the crack, and the equivalent width of the slot is obtained by comparison of stiffness reductions of finite element analysis results and the counterpart transfer matrix method results. Different dimensions of rectangular beams, different crack positions and loading conditions are considered and statistic method is used to improve the generality and accuracy of the model. A calculation example of a cracked cantilever beam is given and the validity of the proposed model is verified with available results of existing models.

  Info
Periodical
Key Engineering Materials (Volumes 348-349)
Edited by
J. Alfaiate, M.H. Aliabadi, M. Guagliano and L. Susmel
Pages
893-896
DOI
10.4028/www.scientific.net/KEM.348-349.893
Citation
K. M. Wang, S. Xiang, "An Open Crack Model for Vibration Simulation of Beam Structures by Transfer Matrix Method", Key Engineering Materials, Vols. 348-349, pp. 893-896, 2007
Online since
September 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhi Ping Yin, Jiong Zhang, Jin Guo, Qi Qing Huang
Abstract:The finite element software ANSYS was employed to create a finite element model of the cracked wing beam integrated structure, and the stress...
101
Authors: Chun Ping Tang, Liang Liang Zhang
Chapter 2: Bridge Engineering
Abstract:Non-linear numerical simulation is done on A-type super high pier by using finite element analysis software ANSYS, obtaining the node stress...
1329