Paper Title:
Research on Surface Low Alloy HSS by Plasma Surface Metallographic W, MO, C Alloying
  Abstract

This research tries to improve the plasma surface W, Mo alloying process by adding inlet methane aside from the original inert gas argon. The carbon and hydrogen particles are incorporated into the ion sputtering, ionization, surface activation and diffusion processes. The W, Mo atoms sputtered from the target diffuse into the surface of the substrate at the same time with the diffusion of carbon atoms. So the synergism of the alloying process and the carburizing process is established in this way. The hydrogen atoms participate the reduction and activation process on the surface of the target and the substrate. The surface HSS combines with substrate via metallurgical bonding and the carbides are all secondary carbides formed at lower temperature during solid state diffusion. These carbides are very soluble to the austenite. This makes the alloy elements fully functional. The carbides with granular shape and distributes homogeneously on the matrix are very fine. No coarse ledeburite eutectic carbide exists. After the co-alloying process of W, Mo, C, direct quench or quench at lower temperature can be applied.

  Info
Periodical
Key Engineering Materials (Volumes 353-358)
Edited by
Yu Zhou, Shan-Tung Tu and Xishan Xie
Pages
1798-1801
DOI
10.4028/www.scientific.net/KEM.353-358.1798
Citation
Y. Gao, J. Y. Xu, Z. Xu, "Research on Surface Low Alloy HSS by Plasma Surface Metallographic W, MO, C Alloying", Key Engineering Materials, Vols. 353-358, pp. 1798-1801, 2007
Online since
September 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Rui Na Ma, Sha Sha Jin, Hong Yun Li
Metal Alloy Materials
Abstract:The static constant corrosion tests on Fe-B eutectic alloy are investigated in liquid zinc at 500°C. The systematic observation and research...
805
Authors: Sheng Zhu, Guo Feng Han, Xiao Ming Wang, Wen Bo Du
Chapter 1: Composites
Abstract:In this study, Al-Si alloy protective coating was deposited on the surface of ZM5 magnesium alloy by cold spray technology. Researchers...
142
Authors: S.G. Shabestari, R. Gholizadeh
Chapter 2: Forming in Melt or Near Melt Condition
Abstract:Dense precipitation of various intermetallic compounds is a common feature in the microstructure of Al-Si piston alloys. In this...
289
Authors: Hsi Hsin Chien, Kung Jeng Ma, Chien Hung Kuo
Chapter 3: Mechanical Engineering and Manufacturing
Abstract:Glass molding process provides a great potential for the production of precise glass optical components at low cost. The platinum-iridium...
533
Authors: Jung Hwa Seo, Dong Geun Lee, Cheng Lin Li, Xu Jun Mi, Yong Tae Lee
Chapter 1: Advanced Materials and Technology on Metallurgy
Abstract:Microstructure characterization and hardening behavior of a new designed Ti-12.1Mo-1Fe alloy during solution and aging treatment was...
37