Paper Title:
Microstructure and Strength of Alumina-Metal Joint Brazed by Activated Molybdenum–Manganese Method
  Abstract

High purity alumina/stainless steel joints were produced via activated molybdenummanganese (Mo-Mn) route using 72Ag-28Cu solder. Microstructures of the metallized ceramic and joint sections were observed by scanning electron microscopy. Joint strength was tested by shear-loading method. Some process factors were characterized and analyzed, which include temperature, holding time and heating and cooling rate in ceramic metallization process. The effects of Ni plating and succedent annealing were also investigated. Experimental results show that, migration of glassy phases is the main mechanism of the ceramic metallization. Glass migration direction is from metallizing layer to ceramic side. In the ranges of temperature and holding time of metallization, joint strength firstly increases and then falls with temperature raising and time extending. More fully sintered metallizing layer can be obtained while the temperature increases from 1200oC to 1500oC, and the time prolongs from 30min to 60min. Over-sintering of the metallizing layer will take place with metallizing temperature of 1600 oC and overlong holding time of 70min, which reduces the joint strength. The slower heating and cooling rate, and the annealing after Ni plating both help enhance the seal strength, due to relieving or eliminating interlayer residual thermal stress. However, too slow heating and cooling rate, such as 5 oC /min, is equivalent to overlong holding time and finally also decline the strength. A thin Ni coating helps solder wet metallizing surface, and stops solder erode metallizing layer.

  Info
Periodical
Key Engineering Materials (Volumes 353-358)
Edited by
Yu Zhou, Shan-Tung Tu and Xishan Xie
Pages
2049-2052
DOI
10.4028/www.scientific.net/KEM.353-358.2049
Citation
G. W. Liu, G. J. Qiao, H. J. Wang, Z. H. Jin, "Microstructure and Strength of Alumina-Metal Joint Brazed by Activated Molybdenum–Manganese Method", Key Engineering Materials, Vols. 353-358, pp. 2049-2052, 2007
Online since
September 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: S. Bueno, Rodrigo Moreno, Carmen Baudín
61
Authors: Oleg Vasylkiv, Yoshio Sakka, Valeriy Skorokhod
2347
Authors: Seong Min Choi, Uraiwan Leela-adisorn, Sawao Honda, Shinobu Hashimoto, Hideo Awaji
Abstract:Intra-type structure of ceramic matrix composites (CMCs) can improve the mechanical properties of ceramic materials. In this work, we used...
115
Authors: Won Seung Cho, Yeon Chul Yoo, Chin Myung Whang, Nam Hee Cho, Woon Suk Hwang, Jun Gyu Kim, Young Jae Kwon
Abstract:Porous alumina bodies were successfully prepared by spark plasma sintering of alumina powders with different amounts of graphite, and by...
1056
Authors: Kozue Matsukawa, Masamitsu Imai, Toyohiko Yano
Abstract:Monazite(LaPO4)-coated alumina-fiber/alumina-YAG (Y3Al5O12) matrix composites were fabricated by in-situ coating of monazite followed by...
213