Paper Title:
Damage Detection and Quantitative Assessment for the Cracked Beam Structures
  Abstract

Beam structures are a common form in many large structures, and therefore the real-time condition monitoring and active control of beams will improve the reliability and safety of many structures. However, the incipient damage, i.e. cracks, is not easy to be detected with using the traditional methods, such as modal analysis, etc. Piezoceramic (PZT) sensors offer special opportunities for the health monitoring of structures constructed by beams. The change of mechanical impedance of structures along with the occurrence of damage is sensitively indicated by the change of electro-impedance of PZT sensors. This paper presents work done on developing and utilizing PZT sensors to detect and quantitatively assess the extent and locations of cracks occurred in simulated structures. The PZT sensors are conducted particularly to generate the longitudinal wave along the beam specimen, and systematic experiments conducted on statistical samples of incrementally damaged specimens were used to fully understand the method, the cracks with different length and location are simulated to indicate the feasibility of the detection and assessment. To estimate the damage conditions numerically, in this paper, we propose the evaluation method of impedance peak frequency shift F and CC (Correlation Coefficient), Cov (Covariance). The results of experiments verify that the impedance peak frequency shift Δ F uniformly assesses the location of cracks, and as well CC. and Cov assesses the size of cracks efficiently. The study presents the method that is satisfied for much higher frequencies, alternate power, and minute damages.

  Info
Periodical
Key Engineering Materials (Volumes 353-358)
Edited by
Yu Zhou, Shan-Tung Tu and Xishan Xie
Pages
2431-2435
DOI
10.4028/www.scientific.net/KEM.353-358.2431
Citation
Y. Hong, B. J. Kim, D. P. Hong, Y. M. Kim, "Damage Detection and Quantitative Assessment for the Cracked Beam Structures ", Key Engineering Materials, Vols. 353-358, pp. 2431-2435, 2007
Online since
September 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Kamyar Tahmasebpour, Meftah Hrairi, Mohd Sultan I.S. Dawood
Chapter 9: Details and Machine Components, Mechatronics and Automation
Abstract:Electro-mechanical impedance method is emerging as an important and powerful technique for structural health monitoring (SHM). Active...
539
Authors: Hector de Castilla, Pierre Bélanger, Ricardo J. Zednik
Chapter 2: Contributed Papers
Abstract:High temperature piezoelectric materials have numerous potential applications, including high temperature ultrasound NDT, MEMS, sensors, or...
408