Paper Title:
Analysis of Stress Intensity Factors of a Planar Rectangular Interfacial Crack in Three Dimensional Bimaterials
  Abstract

In this study, a rectangular interfacial crack in three dimensional bimaterials is analyzed. First, the problem is formulated as a system of singular integral equations on the basis of the body force method. In the numerical analysis, unknown body force densities are approximated by the products of the fundamental density functions and power series, where the fundamental density functions are chosen to express a two-dimensional interface crack exactly. The calculation shows that the present method gives smooth variations of stress intensity factor along the crack front for various aspect ratios. The present method gives rapidly converging numerical results and highly satisfied boundary conditions throughout the crack boundary. It is found that the stress intensity factors K1 and K2 are determined by bimaterials constant e alone, independent of elastic modulus ratio and Poisson's ratio.

  Info
Periodical
Key Engineering Materials (Volumes 353-358)
Edited by
Yu Zhou, Shan-Tung Tu and Xishan Xie
Pages
2449-2452
DOI
10.4028/www.scientific.net/KEM.353-358.2449
Citation
N. Noda, C. H. Xu, "Analysis of Stress Intensity Factors of a Planar Rectangular Interfacial Crack in Three Dimensional Bimaterials", Key Engineering Materials, Vols. 353-358, pp. 2449-2452, 2007
Online since
September 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ozgur Inan, Serkan Dag, Fazil Erdogan
Abstract:In this study the three – dimensional surface cracking of a graded coating bonded to a homogeneous substrate is considered. The main...
373
Authors: Jun Si, Fu Zhen Xuan, Shan Tung Tu
Abstract:The interaction behavior of two non-aligned through-wall cracks in flat plates is investigated by the finite element method (FEM) under...
105
Authors: Jun Ru Yang, Zhao Qian Li, Chuan Zhen Huang, Quan Wei Wang
Abstract:Basing on the theoretical study on the stress intensity factor (SIF) of the crack inclined across the interface of the cermet cladding part,...
213
Authors: Jun Ru Yang, Gong Ling Chen, Li Li Zhang, Jing Sun
VI. Analytical and Numerical Methods for Materials Processing
Abstract:Based on the theoretical study on the tip stress intensity factor (SIF) of the crack normal to and dwelling on the interface, using the...
525