Paper Title:
The Effect of Particle Morphologies on Mechanical Properties of Porous Hydroxyapatite Scaffold
  Abstract

Porous hydroxyapatite (HA) ceramic scaffolds are extensively used to induct the tissue growth for bone repair and replacement, and serve functions to support the adhesion, transfer, proliferation and differentiation of cells. Highly porous structure is always expected for its positive effect on the bone regeneration in vivo, nevertheless high porosity always accompanies a decrease in strength of the HA ceramic scaffolds. Therefore, it is significant to improve the strength of the HA ceramic scaffolds with highly interconnected porosity so that they are more suitable in clinic applications. The aim of this study is to investigate the effect of starting materials on mechanical property of final scaffold in order to optimize the preparation process. In this work, three starting HA particles with different morphologies are used to prepare highly porous HA ceramic scaffolds by the polymer impregnation approach in the same preparation process. The phase composition, microstructure and mechanical properties of the sintered porous HA scaffolds are investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM) and compressive test. The experimental results show that the particle morphologies have influence on the slurry viscosity and further affect the coating amount on the sponge. The porous HA ceramics fabricated by spherical HA particle hold the highest compressive strength than the other two HA scaffolds for better sintering property. It is an effectively method to improve the mechanical property of porous HA ceramic scaffolds by optimizing the starting particle morphology.

  Info
Periodical
Key Engineering Materials (Volumes 361-363)
Main Theme
Edited by
Guy Daculsi and Pierre Layrolle
Pages
179-182
DOI
10.4028/www.scientific.net/KEM.361-363.179
Citation
J. Zhao, S.G. Xiao, J. X. Wang, J. Weng, "The Effect of Particle Morphologies on Mechanical Properties of Porous Hydroxyapatite Scaffold", Key Engineering Materials, Vols. 361-363, pp. 179-182, 2008
Online since
November 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: J.W. Paek, Beom Seob Kim, Deug Joong Kim
Abstract:Ceramic foams containing MoSi2 were prepared by a self-blowing process of poly-silsesquioxane with MoSi2 as filler. Ceramic foams prepared by...
129
Authors: Szilvia Eosoly, Stefan Lohfeld, Dermot Brabazon
Abstract:Selective laser sintering (SLS) has the potential to fabricate bioresorbable polymer / ceramic composite scaffolds with pre-designed external...
659
Authors: Joo Eon Park, Mitsugu Todo
Abstract:Novel reinforcements such as beam, film, and porous frame were developed to improve the mechanical properties of poly(L-lactide) (PLLA)...
303
Authors: Miao Zhou Huang, Tao Meng, Xiao Qian Qian, Jin Jian Zhang
Abstract:The flow ability, mechanical properties and microstructure of concrete with different strength grades affected by nano-SiO2 and...
480
Authors: Jun Li, Wen Jie Yuan, Cheng Ji Deng, Hong Xi Zhu
Chapter 12: Ceramic, Refractory and Strong Materials
Abstract:Effect of different sintering additives on reaction-bonded Si3N4/SiC composite ceramics under pressureless was investigated. Si3N4/SiC...
2349