Paper Title:
Dynamic Characteristics in Cutting Processses for Precision Machining
  Abstract

The accuracy and surface roughness of a machined component is strongly dominated by the dynamic characteristics of the machine tool while the most important factor related to precision machining is the dynamic behaviors during cutting processes. The main objective of this study is to develop a thermo-elastic-plastic coupling dynamic cutting model under large deformation for precision machining and so that the model can be used to predict several variations of cutting mechanics variables. The flow stress in the model is considered as a function of strain, strain rate and temperature and the critical value of the strain energy density of the workpiece is utilized as a chip separation criterion. A powerful FEM software is adopted to create a complete numerical solution for this model. During the analysis, the cutting tool is incrementally advanced forward in a step-by-step manner, from an incipient stage of tool-workpiece engagement to a steady state of chip formation. Three different dynamic cutting processes are introduced in this study, i.e., wave cutting, wave removing and wave on wave cutting. Various levels of frequencies, of amplitudes and of phase angle associated with different kinds of sinusoidal surface waviness are arranged during each simulation case. A whole simulation of dynamic cutting process is undertaken and the fluctuations of the dynamic cutting force during each dynamic cutting process are determined.

  Info
Periodical
Key Engineering Materials (Volumes 364-366)
Edited by
Guo Fan JIN, Wing Bun LEE, Chi Fai CHEUNG and Suet TO
Pages
265-271
DOI
10.4028/www.scientific.net/KEM.364-366.265
Citation
S. Y. Lin, Y.C. Fang, "Dynamic Characteristics in Cutting Processses for Precision Machining", Key Engineering Materials, Vols. 364-366, pp. 265-271, 2008
Online since
December 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Han Ul Lee, Dong Woo Cho
Abstract:For effective rough milling, an optimized criterion is required to select the feedrate. In this study, a method to obtain the most...
43
Authors: Xue Song Han
Abstract:Exit fracture, the main factor influencing the precision of workpiece, has already been extensively studied. In the case of nanometric...
1833
Authors: Yi Wan, Zhan Qiang Liu, Xing Ai
Abstract:Five-axis milling is widely used in machining of complex surfaces parts. Part quality and productivity are extremely affected by cutting...
2049
Authors: Jun Zhou, Jian Feng Li, Jie Sun
Abstract:In this paper, the micro-scale machining characteristics of a non-ferrous structural alloy, aluminum 7050-T7451 is investigated through a...
657
Authors: Atanu Das, Partha Pratim Saha, Santanu Das
Chapter 8: Material Processing Technology
Abstract:Shaping Burrs are produced at the edge of a workpiece when a cutter exits it. It causes difficulties in manufacturing and assembly stages....
1602