Paper Title:
The Analysis on Penetrating Efficiency in High-Energy Beam Drilling
  Abstract

In Laser Beam (L.B.) and Electron Beam (E.B.) drilling, the energy distribution significantly affects both the penetrating efficiency and working performance, both of which are usually estimated by numerical skill or experimental measure. Through the application of a stimulation model, an unstable solution with the finite difference method will result near the solidliquid interface unless much finer grid sizes are set up. To improve on the above defect, nonuniform grids are therefore utilized; this will complicate the built-up of the program and also easily causes the simulated energy distribution to be divergent in the iteration process. In this study, an estimated small Peclet number and observed narrow-deep cavity made the convective and radial diffusion terms small enough to be neglected in the governing equation. From these assumptions, the model was then used to investigate the drilling efficiency where two-phase flow convection could be simplified further into one dimension and thus the analytical solution becomes possible by transferring the penetration velocity into the logarithmic form. When compared with the experiment made by Allmen [1] , the present model shows good agreement in higher energy density and relative errors are no more than 10%.

  Info
Periodical
Key Engineering Materials (Volumes 364-366)
Edited by
Guo Fan JIN, Wing Bun LEE, Chi Fai CHEUNG and Suet TO
Pages
308-314
DOI
10.4028/www.scientific.net/KEM.364-366.308
Citation
J. E. Ho, H. T. Young, "The Analysis on Penetrating Efficiency in High-Energy Beam Drilling", Key Engineering Materials, Vols. 364-366, pp. 308-314, 2008
Online since
December 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hong Yan, Zhi Hu, Ti Shuan Suan
Abstract:The technology of computer numerical simulation on casting process is an important frontal field of material science and technology. The...
1041
Authors: Riaz Ahmad Bhatti, Yan Rong Wang, Zhou Cheng Wang
Abstract:Particle impact damping (PID) is a technique of achieving high structural damping with small metallic particles embedded within a cavity that...
415
Authors: Zhi Zhang Song, Qin An Li, Tao Zhang
Chapter 2: Smart Materials for Biomedical Engineering Application
Abstract:In this paper, the inversion population distribution model in the gain medium are given and simulated numerically corresponding to different...
338
Authors: Chuan Zhi Mei, Lin Hua Piao, Quan Gang Yu, Bao Li Zhang, Xia Ding, Xing Wang
Chapter 7: Transmission and Control of Fluid
Abstract:In this paper, the pendulum characteristic of nature convection gas in dimensional enclosure is analyzed by FEM. Using ANSYS-FLOTRAN CFD...
1120
Authors: Jing Zhao, Guo Yu Wang, Yan Zhao, Yue Ju Liu
Chapter 4: Mechanical Engineering
Abstract:A numerical simulation approach of ventilated cavity considering the compressibility of gases is established in this paper, introducing the...
395