Paper Title:
Research on Material Removal of a New Micro Machining Technology Based on the Magnetorheological Effect of Abrasive Slurry
  Abstract

Based on the magnetorheological (MR) effect of abrasive slurry, the particle-dispersed MR fluid is used as a special instantaneous bond to cohere abrasive particles and magnetic particles so as to form a dynamic, flexible tiny-grinding wheel to polish optical glass, ceramic and other brittle materials of millimeter or sub-millimeter scale with a high efficiency. Experiments were conducted to reveal the effects of different process parameters, such as grain sizes of abrasive particles, machining time, machining gap between the workpiece and the rotation tool, and rotation speed of the tool, on material removal rate of glass surface. The results indicate the following conclusions: material removal rate increases when the grain size of abrasives is similar to that of magnetic particles; machining time is directly proportional to material removal, but inversely proportional to material removal rate; machining gap is inversely proportional to material removal; polishing speed has both positive and negative influence on material removal rate, and greater material removal rate can be obtained at a certain rotation speed. In addition, the difference of the machining characteristics between this new method and the traditional fixed-abrasive machining method is analyzed.

  Info
Periodical
Key Engineering Materials (Volumes 364-366)
Edited by
Guo Fan JIN, Wing Bun LEE, Chi Fai CHEUNG and Suet TO
Pages
914-919
DOI
10.4028/www.scientific.net/KEM.364-366.914
Citation
J. Yu, Q. S. Yan, J. B. Lu, W. Q. Gao, "Research on Material Removal of a New Micro Machining Technology Based on the Magnetorheological Effect of Abrasive Slurry", Key Engineering Materials, Vols. 364-366, pp. 914-919, 2008
Online since
December 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Qin He Zhang, Jian Hua Zhang, J.H. Cheng, C.Q. Zhang, Sheng Feng Ren
406
Authors: Yan Hua Zou, Takeo Shinmura
Abstract:This paper describes a new efficient internal finishing process for a thick tubing (10~30mm in thickness), by the application of a magnetic...
106
Authors: Ya Dong Gong, Yue Ming Liu, Jun Cheng, J.F. Zhang
Abstract:Grinding characteristics brought by the grinding speed reduction and geometrical model differences between micro-grinding and conventional...
6
Authors: Qian Fa Deng, Ping Zhao, Bing Hai Lv, Ju Long Yuan, Zhi Wei Wang
Chapter 1: Grinding Technology
Abstract:Abrasive machining is an important process for the manufacturing of advanced ceramics. The demand for advanced ceramics with better quality...
251
Authors: Mahadev Gouda Patil, Kamlesh Chandra, Prabhu Shankar Misra
Chapter 5: Powder Metallurgy and Plastic Deformation
Abstract:Abstract: The magnetic abrasive finishing (MAF) process which was introduced during the late 1940s has emerged as an important...
1577