Paper Title:
Study on Wear Resistance of Plasma Sprayed Coating Remelted by Laser
  Abstract

In order to improve the wear resistance of the surface of thick copperplate, a coating of alloy powder is produced on the surface of the thick copperplate with the method of laser remelting plasma sprayed coating. The value simulation of temperature and the experimental results show that, it is difficult to produce ferronickel coating with large area and crackfree on thick copperplate for laser cladding technique. Using transsonic plasma heat spraying method to fix the alloy powder on the surface of thick copperplate, a sprayed coating can be produced, which has certain adhesion strength to the copperplate. In order to prevent crack produced in large area laser remelting coating, a method with band-like and point-like remilting area at intervals of same distance has been taken. The surface appearance and roughness of the coating produced by plasma spraying are compared with that of the coating produced by plasma spraying and remelted by laser, micro organization analysis and wear resistance comparison experiments are taken to the specimen. The microstructure photos show that the coating of the plasma heat sprayed is mainly made up by grains, with a great deal of pores existing. After laser remelting, microstructure of the coating is more compact, and the most of pores disappeared, so the strength of the boundary between the remelted coating and the copperplate is build up and the coating with large area and crackfree on thick copperplate is performed by the method of laser remelting plasma spraying coating in large amount of point-like remilting areas The experiment result shows that the wear resistance of laser remelting plasma heat sprayed coating enhances 3 times more than That of the unremelt coating, and about 14 times compared with the copperplate, and the wear resistance of the surface with point-like laser remelting area is between that of plasma heat sprayed coating and that of the laser remelting coating, it depends on the ratio of the remelted part to the whole in area, however, the wear resistance increases with the value of the ratio

  Info
Periodical
Key Engineering Materials (Volumes 373-374)
Main Theme
Edited by
M.K. Lei, X.P. Zhu, K.W. Xu and B.S. Xu
Pages
392-395
DOI
10.4028/www.scientific.net/KEM.373-374.392
Citation
Y.J. Liu, Y.S. Wang, X. C. Yang, "Study on Wear Resistance of Plasma Sprayed Coating Remelted by Laser ", Key Engineering Materials, Vols. 373-374, pp. 392-395, 2008
Online since
March 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zeng Yi, Xue Bin Zheng, Heng Ji, Wei Wu, Soo Wohn Lee
Abstract:The W coatings were prepared by applying the vacuum plasma spraying process (VPS). The phase composition, microstructure and laser...
849
Authors: Xi Liang Dai, Sheng Hui Peng, An Yu Chen, Ke Jiu Lu
Abstract:The performance of Aluminum alloy cylinder at high temperature largely depends on its inner surface hardness and wear resistance. In order to...
1151
Authors: Yu Deng, Sheng Fu Yu, Shu Le Xing, Lin Bing Huang
Surface Engineering/Coatings
Abstract:A kind of self-shielded carbonitride alloying flux-cored wire was developed. Wear resistant coatings was prepared on the surface of the Q235...
33
Authors: Zong Yin Duan, Dong Sheng Wang
Chapter 12: Laser Processing Technology
Abstract:This paper deals with the microstructure and thermal shock behavior of laser remelting of yttria-stabilized zirconia (YSZ) thermal barrier...
2502
Authors: Ren Guo Song, Pu Hong Tang, Chao Wang, Guo Lu
Chapter 2: Surface Engineering/Coatings
Abstract:Al2O3 and Al2O3-40wt.%TiO2 ceramic coatings on H13 hot-worked die steel have been...
235