Paper Title:
Development and Commercialization of Vapor Grown Carbon Nanofibers: A Review
  Abstract

The lack of a low cost, high volume method to produce carbon nanotubes has greatly limited their commercialization. Carbon nanofibers have a similar structure and properties as nanotubes and are a commercially viable alternative to them. In recent years many of the difficulties of commercial nanofiber production have been overcome through innovations in their manufacturing process. It is now possible to produce carbon nanofibers of different grades, such as thinner and thicker walled ones, and low heat treated and high heat treated ones. Most significantly, commercial quantities can now be produced of carbon nanofibers that have been surface functionalized with carboxylic acid groups, making them suitable for further functionalization and new classes of applications, such as biomedical sensors and drug delivery. Despite their cost advantages and availability more widespread use of carbon nanofibers has been hampered by uncertainties in their molecular structure and a lack of physical property measurements. However, recent theoretical and experimental studies have addressed these deficiencies showing that these fibers have a cone-helix structure under the usual manufacturing conditions. Additionally, small amounts of a segmented carbon nanotube structure, commonly called a bamboo structure, are also present. When the conical nanofibers were heat treated they were found to transform to a stacked cone structure. Advances in surface functionalization have allowed a variety of groups to be incorporated on them, significantly enhancing their properties and potential applications. Finally, the recent development of a new method to measure the elastic properties and morphology of single nanofibers has clearly demonstrated the high strength of these fibers. These nanofibers now represent a well understood and well characterized graphitic carbon nanomaterial that can be manufactured at low cost in large quantities, and have the potential to bring widespread use of nanotechnology to a variety of fields.

  Info
Periodical
Edited by
J. A. Sekhar and J. P. Dismukes
Pages
193-206
DOI
10.4028/www.scientific.net/KEM.380.193
Citation
A. Nadarajah, J. G. Lawrence, T. W. Hughes, "Development and Commercialization of Vapor Grown Carbon Nanofibers: A Review", Key Engineering Materials, Vol. 380, pp. 193-206, 2008
Online since
March 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Csaba Balázsi, Ferenc Wéber, Péter Arató, Balazs Fényi, Norbert Hegman, Zoltán Kónya, Imre Kiricsi, Zófia Vértesy, László Péter Biró
Abstract:This work is focusing on exploring preparing processes to tailor the microstructure of carbon nanotube (CNT) reinforced silicon...
1723
Authors: Zhao Yong Ding, Bao Min Sun, Yong Hong Guo, Bin Jia, Jin Sheng Bi
Abstract:Pyramid sharp pyrolysis flame is a new method for carbon nanotubes synthesis. Oxy-acetylene flame outside the frustum of pyramid sharp...
572
Authors: Qian Zhang, Li Feng Dong
Chapter 9: Nano Materials
Abstract:A series of techniques, including field emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction,...
1364
Authors: Jian Bao Hu, Shao Ming Dong, Xiang Yu Zhang, Zhi Hui Hu, Bo Lu, Jin Shan Yang, Qing Gang Li, Bin Wu
Chapter 2: Engineering Ceramics and Ceramic Composites
Abstract:Surface modification of carbon fibers(CF) by physicochemical methods directs an attractive approach for improvement of metal uptake from...
761
Authors: Shu Xian Wu, Fu Yang, Shao Lin Xue, Xin Luo Zhao
Chapter 2: Micro/Nano Materials
Abstract:The field emission properties of single-wall carbon nanotubes with purity higher than 70%,which were produced by dc arc discharge evaporation...
465