Paper Title:
Fast Analytical Algorithm for Fatigue Crack Life Estimations of Integrally Stiffened Metallic Panels
  Abstract

This work presents the enhancement of a pseudo-numerical tool for fatigue crack growth investigations on integrally stiffened metallic panels. The model is based on an analytical approach that demands compatibility of displacement between skin sheet and stiffener. Since the basis model was presented before, the focus of the present work is on the incorporation of residual stress effects in order to improve simulation results of welded panel configurations that are manufactured by laser beam welding or friction stir welding and exhibit a significant amount of residual stresses. The necessary input parameters for the developed residual stress module are determined from experimental residual stress field measurements. Simulation results using the presented approach are compared with results from finite element simulations on a two stringer panel which show the good accordance of the base model as well as the capability of the tool enhancements to account for the crack retarding effect caused by residual stresses.

  Info
Periodical
Key Engineering Materials (Volumes 385-387)
Edited by
H.S. Lee, I.S. Yoon and M.H. Aliabadi
Pages
529-532
DOI
10.4028/www.scientific.net/KEM.385-387.529
Citation
S. M. Häusler, P. Horst, "Fast Analytical Algorithm for Fatigue Crack Life Estimations of Integrally Stiffened Metallic Panels", Key Engineering Materials, Vols. 385-387, pp. 529-532, 2008
Online since
July 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jun Si, Fu Zhen Xuan, Shan Tung Tu
Abstract:The interaction behavior of two non-aligned through-wall cracks in flat plates is investigated by the finite element method (FEM) under...
105
Authors: Jin San Ju, Xiu Gen Jiang, Xiang Rong Fu
Abstract:This paper primarily presents the development and application of automation computational analysis techniques to determine the dynamic...
705
Authors: Masanori Kikuchi, Yoshitaka Wada, Masafumi Takahashi, Yu Long Li
Abstract:Fatigue crack growth under mixed mode loading conditions is simulated using S-FEM. By using S-FEM technique, only local mesh should be...
133
Authors: F. Ricci, F. Franco, Nicola Montefusco
Abstract:In this paper, the mechanisms of propagation of the damage in aluminum panels repaired with bonded composite patches of different mechanical...
597
Authors: Yu E Ma, Bao Qi Liu, Zhen Qiang Zhao
Chapter 2: Material Science and Engineering
Abstract:Al-Li alloy 2198-T8 was used in the fuselage application. Integral fuselage panels were joined by double friction stir welds. Fatigue tests...
651