Paper Title:
Experimental Study on the Flexural Fatigue Damage Evolution of Layered Fiber Reinforced Concrete
  Abstract

In order to study the damage evolution law for layered fiber reinforced concrete subjected to flexural fatigue, the flexural fatigue tests were carried out on both layered steel fiber reinforced concrete(LSFRC) and layered hybrid fiber reinforced concrete(LHFRC) beams of which the type of steel fiber was uniform on the same concrete mix. At the same time the flexural fatigue tests with original concrete(OC) were carried out. Based on the experiments, both flexural fatigue life and damage characteristic of LSFRC LHFRC and OC were compared and analyzed. The results indicated that the fatigue life of LHFRC was a little larger than that of LSFRC under the stress level, which was more than an order of magnitude of OC. And the fatigue distortion of LSFRC, LHFRC and OC were similar. They all followed three-phase law. However, the proportion of every phase was different, which proved that layered steel fibers and polypropylene fibers could effectively restrain the degradation of concrete.

  Info
Periodical
Key Engineering Materials (Volumes 385-387)
Edited by
H.S. Lee, I.S. Yoon and M.H. Aliabadi
Pages
673-676
DOI
10.4028/www.scientific.net/KEM.385-387.673
Citation
J. Wang, M. Z. Zhang, X. C. Fan, "Experimental Study on the Flexural Fatigue Damage Evolution of Layered Fiber Reinforced Concrete", Key Engineering Materials, Vols. 385-387, pp. 673-676, 2008
Online since
July 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Shun Fa Hwang, Yi Der Su
Abstract:Composite materials using polymer resins as matrices have viscoelastic behavior. This behavior has effects on the fatigue properties of...
1031
Authors: Stanislav Seitl, Pavel Hutař, Zdeněk Knésl
Abstract:The formulations of fatigue crack growth prediction are still mostly based on phenomenological models. A commonly used formula in the field...
557
Authors: Qing Yu Cao, Wei Sun, Li Ping Guo
Abstract:Cracking is the most common damage in the secondary lining concrete because of its continuous thin-walled structure, potential surrounding...
793
Authors: Ke Liu, Yan Ming Wang, Wen Wen Yang, Yong Sun
Chapter 1: Advanced Materials Science
Abstract:The fiber reinforced concrete with flexible fiber and rigid fiber respectively added into C30 plain concrete, curing under standard condition...
619
Authors: Ying Cao, Li Pan
Chapter 2: Materials Science
Abstract:In the present investigation, resin transfer molding has been used to produce high quality carbon fiber epoxy composites and...
753