Paper Title:
Crack Spacing and the Flow Stress in NiTi Thin Films Deposited on Cu Substrate
  Abstract

Ti-51.45at.%Ni thin films were deposited onto copper substrates by magnetron sputtering. The copper substrates were pre-punched into dog-bone specimens with 4.5mm×30mm(gauge portion) ×35µm( thickness). The substrate temperature was about 673K. The thin films were about 20µm thick. The as-deposited films were first solution treated at 1073K for 1h, and then aged at 773K for 30min. The grain size was estimated to be 1.5µm from scanning electron microscopy micrographs. Tensile tests were carried out on CSS-44100 electron universal test-machine. The strain rate was 1.1×10-4 s-1. The stress-strain curves of the free-standing film were obtained from the experimental stress-strain curves of copper substrate together with the thin film adherent to the substrate compared with the curves of copper substrate without film. The Hall-Patch coefficient was calculated, k=205Mpa.µm1/2. It seems that the Hall-Patch coefficient decreases with increasing film thickness. The experimental results showed that a series of parallel cracks grew in a concerted fashion across the thin film and the cracks were equally spaced. The cracks were more closely spaced if the film stress was increased. The fracture toughness of the film was estimated, c KΙ =0.96MPa·m1/2. Therefore, the minimum crack spacing is predicted by the film stress given.

  Info
Periodical
Key Engineering Materials (Volumes 385-387)
Edited by
H.S. Lee, I.S. Yoon and M.H. Aliabadi
Pages
89-92
DOI
10.4028/www.scientific.net/KEM.385-387.89
Citation
Y. H. Li, F.L. Meng, C. S. Liu, Y.M. Wang, "Crack Spacing and the Flow Stress in NiTi Thin Films Deposited on Cu Substrate", Key Engineering Materials, Vols. 385-387, pp. 89-92, 2008
Online since
July 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Xi Yun He, Ai Li Ding, Yong Zhang, Zi Ping Cao, Ping Sun Qiu
Abstract:PLZT (9/65/35) thin films on sapphire (001) substrates with thickness of 0.1 ~ 0.9 µm were prepared by a metal-organic decomposition (MOD)...
231
Authors: Ping Luan, Jian Sheng Xie, Jin Hua Li
Chapter 3: Surface, Subsurface, and Interface Phenomena
Abstract:Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films...
822
Authors: Xue Hui Wang, Wu Tang, Ji Jun Yang
Chapter 6: Material Design of Computer Aided
Abstract:The porous Cu film was deposited on soft PVDF substrate by magnetron sputtering at different sputtering pressure. The microstructure and...
1451
Authors: Da Pei Tang
Chapter 3: Thermo-Mechanical and High Strain Rates Effects, and Energy Properties of Materials
Abstract:According to the special case of high strain rate for diamond film produced by DC plasma jet method, a transient thermo-mechanical coupled...
160
Authors: Wu Tang, Ji Jun Yang, Chi Ming Li
Chapter 2: Materials Science and Processing
Abstract:In this paper, Al2O3 thin film samples were deposited on Si-(100) substrate by electron beam evaporation with different thickness at...
161