Paper Title:
Fabrication of High-Aspect Ratio Micro Holes on Hard Brittle Materials -Study on Electrorheological Fluid-Assisted Micro Ultrasonic Machining-
  Abstract

Ultrasonic machining (USM) is an effective method for machining of hard brittle materials. In this process, the slurry is supplied to the gap between the workpiece and the ultrasonic vibrating tool, and the materials are removed by the impacts of the abrasive grains that are pressurized by an ultrasonic vibrating tool. The purpose of this research is to achieve precise and efficient microfabrication on hard brittle materials by USM. However, in the case of microfabrication, chipping which is generally observed around the edges of machined micro holes and grooves, deteriorates the machining accuracy. In addition, there is another problem in that the machining efficiency decreases with the progress of the machining. Electrorheological fluid-assisted USM has been proposed as a countermeasure to these problems. In the present study, the problems and countermeasures associated with the machining of high-aspect ratio micro holes in hard brittle materials by electrorheological fluid-assisted USM are investigated. By positioning an auxiliary electrode under the workpiece, it becomes possible to keep the electric field high even when the machining depth becomes large. As a result, high-precision and high-aspect ratio micro holes can be machined on hard brittle materials.

  Info
Periodical
Key Engineering Materials (Volumes 389-390)
Edited by
Tsunemoto Kuriyagawa, Libo Zhou, Jiwang Yan and Nobuhito Yoshihara
Pages
264-270
DOI
10.4028/www.scientific.net/KEM.389-390.264
Citation
T. Tateishi, N. Yoshihara, J. W. Yan, T. Kuriyagawa, "Fabrication of High-Aspect Ratio Micro Holes on Hard Brittle Materials -Study on Electrorheological Fluid-Assisted Micro Ultrasonic Machining- ", Key Engineering Materials, Vols. 389-390, pp. 264-270, 2009
Online since
September 2008
Export
Price
$35.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Qin He Zhang, Jian Hua Zhang, J.H. Cheng, C.Q. Zhang, Sheng Feng Ren
406
Authors: Tsuyoshi Kaku, Nobuhito Yoshihara, Ji Wang Yan, Tsunemoto Kuriyagawa, Kazuhiko Abiko, Yoshiharu Mikami, Masahiro Noguchi
Abstract:The viscosity of an electrorheological fluid (ER fluid) increases with an increase in the intensity of an electric field. In the case of ER...
213
Authors: Li Li, Dong Wang, Zong Wei Niu, Zhi Yong Li, Guang Ming Yuan
Abstract:A new kind of ultrasonic machining method named ultrasonic machining aided tool rotation is proposed for sintered NdFeB permanent magnet. In...
420
Authors: Cheng Yong Wang, M.D. Chen, P.X. Yang, Jing Ming Fan
Abstract:Abrasive Suspension Jets (ASJ) is a new micro processing technique developed for micro processing of hard and brittle materials based on the...
381
Authors: Kai Egashira, Ryohei Okina, Keishi Yamaguchi, Minoru Ota
Chapter 6: Electrical Discharge Machining, Ultrasonic and Beam Machining
Abstract:The drilling of microholes in hard and brittle materials by ultrasonic grinding was carried out using polycrystalline diamond (PCD) micropins...
435