Paper Title:
Investigation of the Axial Bearing Capacity of the Discontinuous-Tube-in-Core Concrete Filled Steel Tubular Column-Slab Joint
  Abstract

Based on the principle of restrained concrete, this paper presents a new-type concrete filled steel tubular column-slab joint. This new-type joint is characterized by keeping the concrete floor slab continuous while breaking the steel tube of the column for the joint, thus joining the slab and the concrete filled steel tubular(CFST) columns at the top and the bottom of the slab. The joint has the advantage of transferring loads dependably, constructing conveniently and saving on the cost. Three groups of experiments (21 specimens contained) were performed to test the safety of the joint and investigate its axial bearing capacity. The results show that the joint is dependable and feasible in engineering applications. In addition, this paper studies the working mechanism and mechanical properties of the joint under axial compression, discusses the factors to influence its axial bearing capacity, and finally brings out the formula of the joint’s bearing capacity under axial compression that adapts to engineering applications, which conservatively evaluate the result of the experiments.

  Info
Periodical
Key Engineering Materials (Volumes 400-402)
Edited by
Jingsi Huo, Yan Xiao, Zongjin Li and Shuaib Ahmad
Pages
901-910
DOI
10.4028/www.scientific.net/KEM.400-402.901
Citation
F. J. Liu, J. Cai, "Investigation of the Axial Bearing Capacity of the Discontinuous-Tube-in-Core Concrete Filled Steel Tubular Column-Slab Joint", Key Engineering Materials, Vols. 400-402, pp. 901-910, 2009
Online since
October 2008
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jing Si Huo, Guo Wang Huang, Yan Xiao
Abstract:This paper experimentally investigated the effects of axial load level on the residual strength and stiffness of concrete-filled steel...
769
Authors: Jun Su, Shi Lang Xu, Dong Tao Xia
Chapter 2: Frontiers of Building Materials
Abstract:In this article, through the seismic experimental analysis for six frame joints of ultra-high toughness cementitious composites, the...
794
Authors: Shan Suo Zheng, Yue Heng Yan, Qing Lin Tao, Wen Yong Li
Chapter 5: Seismic Engineering
Abstract:Based on the experiments of a reinforced concrete frame column, 5 new members with different volumetric percentage of stirrups which are...
2046
Authors: Xiao Wei Li, Xue Wei Li, Xin Yuan
Chapter 1: Traditional Building Materials
Abstract:For expedite the development of high titanium heavy slag concrete, eight high titanium heavy slag high strength reinforced concrete...
455
Authors: Cun Hui, Wan Lin Cao, Hong Ying Dong
Chapter 2: Structural Engineering
Abstract:The structural measures about puting the additional energy dissipation plat at the bottom of the CFST columns where bears more stress, was...
620