Paper Title:
Mechanical and Thermal Properties of Silicon Carbide Composites with Chopped Si-Al-C Fiber Addition
  Abstract

The fabrication conditions of dense silicon carbide (SiC) composites containing chopped Tyranno Si-Al-C (SA) fiber were examined in this work; SiC compacts containing SA fiber (mean lengths: 214, 394 and 706 m) were hot-pressed at 1800°C for 30 min under a pressure of 31 MPa in Ar atmosphere. The fracture toughness of SiC composites with 40 mass% of SA fiber addition (sintering aid: 5 mol% Al4C3) increased from 2.8 up to 4.7 MPa•m1/2 as the fiber length increased from 214 to 706 m. The enhanced fracture toughness of the SiC composites was attributed to the lowering of fiber orientation angle (i.e., the angle between the fiber length and direction perpendicular to the hot-pressing direction) to 5° with increasing fiber length. The fracture toughness of SiC composites could be further enhanced through the incorporation of SA fibers with a carbon interface (thickness: 100 nm) into the SiC matrix. The fracture toughness of SiC composite containing 40 mass% of these fibers attained 6.0 MPa•m1/2. The thermal conductivity of SiC composites increased with fiber length from 30.5 W•m-1•K-1 to 45.5 W•m-1•K-1; with no significant influence being noted for the case of fibers with a carbon interface.

  Info
Periodical
Edited by
Katsutoshi Komeya, Yi-Bing Cheng, Junichi Tatami and Mamoru Mitomo
Pages
257-260
DOI
10.4028/www.scientific.net/KEM.403.257
Citation
K. Itatani, I. J. Davies, H. Suemasu, "Mechanical and Thermal Properties of Silicon Carbide Composites with Chopped Si-Al-C Fiber Addition", Key Engineering Materials, Vol. 403, pp. 257-260, 2009
Online since
December 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Tao Jiang, Hai Yun Jin, Zhi Hao Jin, Jian Feng Yang, Guan Jun Qiao
Abstract:The machinable B4C/BN ceramics composites were fabricated by hot-pressing sintering process at 1850oC for 1h under the pressure of 30MPa....
53
Authors: Wan Chang Sun, He Jun Li, Qian Gang Fu, Shou Yang Zhang
Abstract:PAN-carbon fibers were pretreated using three methods. 2D-C/C composites were fabricated by a rapid chemical liquid-vaporized infiltration...
482
Authors: Cai Yun Yang, Xiu Ping Zan, Zhen Ying Hu, Jing Li
Chapter 1: Material Engineering and its Application
Abstract:Two different kinds of structural preforms were designed and manufactured, which were 3D layer-to-layer angle-interlock structure and 3D...
95
Authors: Ying Cao, Li Pan
Chapter 2: Materials Science
Abstract:In the present investigation, resin transfer molding has been used to produce high quality carbon fiber epoxy composites and...
753
Authors: Mi Dan Li, Yao Lu, Lu Lu Feng, Huan Niu, Ya Wen Kong
Chapter 2: Research on Materials,Mechanics and Technologies
Abstract:Composites made from phenolic resin are filled with conductive filler mixtures containing copper powders, natural graphite powders and carbon...
120