Paper Title:
A Feedrate Scheduling Strategy Based on a General Force Model
  Abstract

Sculpture surface machining is a critical process commonly used in die/mold industries. Since there is a lack of scientific tools in practical process planning stages, feedrates for CNC machining are set individual constant values all along the toolpath. In this paper, an enhanced mathematical cutting force model is presented and is used for selecting varying and ‘appropriate’ feed values along the tool path in order to decrease the cycle time in sculpture surface machining. The model is tested under various machining conditions and proved to be effective.

  Info
Periodical
Key Engineering Materials (Volumes 407-408)
Edited by
Fan Rui, Qiao Lihong, Chen Huawei, Ochi Akio, Usuki Hiroshi and Sekiya Katsuhiko
Pages
509-515
DOI
10.4028/www.scientific.net/KEM.407-408.509
Citation
Y. J. Cai, C. Z. Duan, L. J. Sun, "A Feedrate Scheduling Strategy Based on a General Force Model", Key Engineering Materials, Vols. 407-408, pp. 509-515, 2009
Online since
February 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ying Xue Yao, Chang Qing Liu, Jian Guang Li, H.J. Jing, S.D. Chen
Abstract:Traditional adaptive control technologies in machining process optimization are limited in applications because they depend much on sensors,...
1
Authors: Han Ul Lee, Dong Woo Cho
Abstract:For effective rough milling, an optimized criterion is required to select the feedrate. In this study, a method to obtain the most...
43
Authors: Yi Wan, Zhan Qiang Liu, Xing Ai
Abstract:Five-axis milling is widely used in machining of complex surfaces parts. Part quality and productivity are extremely affected by cutting...
2049
Authors: Xue Hui Wang, Ming Jun Feng, Can Zhao
Abstract:The mechanical properties of flat end mill is analyzed the high-speed milling, the linear model for milling force is established. And the...
254
Authors: Seok Won Lee, Andreas Nestler
Abstract:In this paper we present a novel mechanistic model of cutting process of the cylindrical tool by using the actual removal volume per tooth...
713