Paper Title:
Harvesting Vibration Energy for Structural Health Monitoring in Aircraft
  Abstract

The concept of harvesting energy is not a new one: there has been an interest in this area for around 10 years. Devices typically use either vibration (rigid body motion) or thermal gradients and can harvest sufficient energy to power telemetry, small devices or to charge a battery or capacitance device. However, for the new generation of aircraft, (both fixed wing and rotating) there is now an urgent need to develop energy harvesting systems in order to provide localised power for sensors in structural health monitoring systems (SHM). By implementing SHM, aircraft manufacturers can benefit from improved safety, reduced maintenance and extended aircraft life. The work presented examines the feasibility of designing an energy harvesting system powered by the vibrations of aircraft panels generated in flight. PZT (lead zirconate titanate) harvesters are bonded to an aluminium alloy panel, representative of an aircraft wing panel which is vibrated across a range of amplitudes (up to + 0.2mm) and frequencies (up to 300Hz). By recording voltage and current outputs from each harvester, generated power is calculated which when normalised for area and mass indicates values of up to 7.0 Wm-2 and 2.5Wkg-1 respectively, representing mechanical to electrical energy conversion efficiencies of up to 35% dependant on frequency of vibration. From these values it is estimated that a harvester area of down to 71cm2 or mass of as little as 20g is necessary to meet the current minimum power requirements of SHM systems of 50mW. With predicted reductions in sensor power consumption indicating system power requirements in the order of 0.1-1mW, this work shows that piezoelectric energy harvesting has future potential for powering aerospace SHM systems.

  Info
Periodical
Key Engineering Materials (Volumes 413-414)
Edited by
F. Chu, H. Ouyang, V. Silberschmidt, L. Garibaldi, C.Surace, W.M. Ostachowicz and D. Jiang
Pages
439-446
DOI
10.4028/www.scientific.net/KEM.413-414.439
Citation
C.A. Featherston, K. M. Holford, B. Greaves, "Harvesting Vibration Energy for Structural Health Monitoring in Aircraft", Key Engineering Materials, Vols. 413-414, pp. 439-446, 2009
Online since
June 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Dan Mateescu, Yong Han, Arun Misra
Abstract:The dynamic analysis of structures with piezoelectric sensors and actuators is used in this paper to establish a method for crack detection...
493
Authors: Jun Liu, Yan Qin Qiu, Cai Feng Chen, Ying Luo, Ping Chen
Abstract:PZT fibers were fabricated by extruding a mixture of PZT powder and sol. 1-3 piezoelectric composites and AFC were fabricated by...
204
Authors: Jun Cheol Jeon, Jung Woo Sohn, Seung Bok Choi
Sensor Technology
Abstract:In this paper, identification of dynamic sensing characteristics of MFC(macro fiber composite) and PVDF(polyvinylidene fluoride) are carried...
1098
Authors: Shun Hsyung Chang, Igor Zhilyaev, Maria Shevtsova, Ping Chen Wu, Yuang Tung Cheng, Jiing Kae Wu
Chapter 2: Robotic, Automation, Sensors, Detection and Monitoring Technologies
Abstract:This paper presents some results of finite element (FE) analysis performed for membrane-type piezoceramic transducer for underwater acoustics...
597
Authors: Kai Zhang, De Shi Wang, Qi Zheng Zhou
Chapter 2: Applied Mechanics and Mechanical Engineering
Abstract:In order to accurately predict the electromechanical coupling performance of bimorph piezoelectric cantilever structure. Based on...
447