Paper Title:
Numerical Computation of the Overall Moduli of Two Dimensional Infinite Media with Cracks
  Abstract

The overall elastic moduli of a solid are changed when the solid is damaged by cracks. For a finite solid, the size influence has been investigated and it has been found that for a given crack density, increasing crack size reduce the overall moduli [1]. For an infinite solid, it is obviously impossible to make the computation with all cracks. Classical methods suggest computing the overall moduli with the solution of the crack opening displacement of one single crack. The interaction between cracks is neglected or taken into account approximately. In this paper, the overall moduli of two dimensional infinite solids with cracks are computed numerically. From numerical simulations, it has been found that the interaction between cracks can be neglected if the distance between them is three times larger than the crack size. So one can compute the opening displacement on one crack with the presence of cracks nearby and use the crack opening displacement to compute the overall moduli. The numerical values are smaller than those of the method of diluted distribution but greater than those of the differential scheme and the self consistent method. They are also slight greater than the numerical results of bounded cracked solids. For small values of crack density however, the numerical results of both infinite solids and bounded solids are close to the estimation of the differential scheme.

  Info
Periodical
Key Engineering Materials (Volumes 417-418)
Edited by
M.H Aliabadi, S. Abela, S. Baragetti, M. Guagliano and Han-Seung Lee
Pages
241-244
DOI
10.4028/www.scientific.net/KEM.417-418.241
Citation
H.P. Yin, "Numerical Computation of the Overall Moduli of Two Dimensional Infinite Media with Cracks", Key Engineering Materials, Vols. 417-418, pp. 241-244, 2010
Online since
October 2009
Authors
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Yun Li, F.X. Che, D.A. Liu
Abstract:Multi-crack problems are deeply involved in rock-like material and rock engineering. In order to study the influences of lateral stress and...
1523
Authors: Jun Si, Fu Zhen Xuan, Shan Tung Tu
Abstract:The interaction behavior of two non-aligned through-wall cracks in flat plates is investigated by the finite element method (FEM) under...
105
Authors: Masanori Kikuchi, Yoshitaka Wada, Masafumi Takahashi, Yu Long Li
Abstract:Fatigue crack growth under mixed mode loading conditions is simulated using S-FEM. By using S-FEM technique, only local mesh should be...
133
Authors: Yan Hua Zhao, Hua Zhang, Wei Dong
Abstract:The wedge splitting (WS) test is now a promising method to perform stable fracture mechanics tests on concrete-like quasi brittle materials....
425