Paper Title:
Towards Predictive Control of Extrusion Weld Seams: An Integrated Approach
  Abstract

Longitudinal weld seams are an intrinsic feature in hollow extrusions produced with porthole dies. The formation of longitudinal weld seams is a solid bonding process, controlled by the local conditions in the extrusion die. Being the weakest areas within the extrusion cross section, it is desirable to achieve adequate properties of these weld seams. In our research, the concept of a weld seam integrity indicator as a means of quantifying bonding efficiency is introduced. The value of this indicator depends on a number of factors: the material flow within the die weld chambers, an adequate pressure level acting on the weld planes and finally the evolution of the metal microstructure. Optimisation of the welding conditions leads to a higher value of the weld seam integrity indicator and thus to improved weld seam properties. The objective of the research presented in this paper is to assess the feasibility of this concept. In lab-scale experiments, AA6060 and AA6082 aluminium alloy billets were formed into strips by means of the direct hot extrusion process. By utilising porthole dies a central longitudinal weld seam is formed. The effect of different geometries of the weld chamber and the processing conditions on the quality of the weld seam are investigated. Characterisation of these weld seams through mechanical testing, focusing on the ability of the weld seam area to accommodate plastic deformation following the onset of plastic instability, and microstructural analysis provides insight into bonding performance. The outcome of this characterisation provides a basis for an estimation of the weld seam indicator. Through computer modelling, the particular process conditions related to weld seam formation are calculated and correlated with the experimental results. The experimental results clearly demonstrate that weld seam formation is controlled by a combination of factors as described above. Inadequate fulfilment of these conditions, verified by the FE-simulations, is the cause of inferior weld seams, associated with low values of the weld seam integrity indicator. Through further elaboration of the concepts presented in this work, the weld seam integrity indicator is to be developed, with the future aim of predicting the weld seam performance through finite element simulations.

  Info
Periodical
Edited by
A. Erman Tekkaya and Nooman Ben Khalifa
Pages
9-17
DOI
10.4028/www.scientific.net/KEM.424.9
Citation
A. J. den Bakker, R. J. Werkhoven, W.H. Sillekens, L. Katgerman, "Towards Predictive Control of Extrusion Weld Seams: An Integrated Approach", Key Engineering Materials, Vol. 424, pp. 9-17, 2010
Online since
December 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jung Min Lee, Byung Min Kim, Chung Gil Kang
487
Authors: Gang Fang, Jie Zhou, Jurek Duczczyk
Abstract:Wide, thin-wall profiles exiting simultaneously from a multi-hole die during aluminum extrusion tend to have different velocities and deflect...
213
Authors: Sören Müller, Jerome Muehlhause, J. Maier, Pavel Hora
Abstract:Of the various boundary conditions that are relevant for the correct modeling of the extrusion process the realistic representation of the...
113
Authors: Jian Yi Pan, Zhao Yao Zhou, Shou Bin Dong
Chapter 3: Materials Forming, Machining and Joining
Abstract:Detail analysis is presented for the influence of elastic deformation on profile wall thickness, the metal flowing and stress load situation...
1439
Authors: Dong Nan Huang, Yu Ning, Fang Lei Shao
Abstract:In this paper, in order to optimize the extrusion die action and to control quality of an industrial large Al-profile, the effects of die...
268