Paper Title:
The Development of Superplastic Magnesium Alloy Sheet
  Abstract

While magnesium alloys are routinely used in engineering applications in the form of net shape castings, applications for sheet product have been limited due to the poor cold formability of magnesium combined with the perceived expense of sheet. The issues associated with poor cold formability could largely be overcome if magnesium alloys were to be superplastically formed. Superplasticity in magnesium is well established with research papers on the subject dating back to the late 1960s. In recent years, interest in this area has grown to the point where a number of companies have successfully superplastically formed prototype automotive panels from magnesium alloy sheet. Concurrent to this the scientific community have demonstrated superplasticity in a wide range of magnesium alloys using processing techniques ranging from the exotic (severe plastic deformation) to the mundane (traditional warm rolling). Work by the current authors has shown, rather surprisingly, that superplasticity can be achieved in magnesium alloys in the as-cast condition. This has led to some initial exploratory work involving twin roll casting. The concept being that affordable superplastic magnesium sheet could be produced via twin roll casting with only limited rolling reduction to final gauge. This paper describes the superplastic behaviour (in uniaxial tension) and microstructure of sheet processed from strip cast AZ31 and AZ91. The experimental material has included strip cast AZ91 subjected to large shear strains immediately prior to casting. The material was tested in the as-cast condition and after warm rolling to a number of gauges. Industrially useful superplastic capability was demonstrated in the strip cast alloys. Furthermore, good superplastic capability was also demonstrated in sheet subsequently rolled from the cast metal and rolling strain did not significantly influence the ductilities obtained. The mechanism for achieving superplasticity in as-cast magnesium alloys will be considered and the contrasting deformation characteristics of AZ31 and AZ91 will be discussed in terms of m value analysis and microstructural characterisation.

  Info
Periodical
Edited by
Daniel G. Sanders
Pages
273-279
DOI
10.4028/www.scientific.net/KEM.433.273
Citation
R. Dashwood, D. Klaumunzer, M. Jackson, Z. Y. Fan, R. Grimes, "The Development of Superplastic Magnesium Alloy Sheet", Key Engineering Materials, Vol. 433, pp. 273-279, 2010
Online since
March 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ha Guk Jeong, Y.G. Jeong, Duk Jae Yoon, Seo Gou Choi, Woo Jin Kim
Abstract:Magnesium alloy AZ31, which processed by conventional rolling or extrusion, has high anisotropy of mechanical properties in its strength and...
235
Authors: Ivan Zuiko, Marat Gazizov, Rustam Kaibyshev
Chapter 3: Superplastic Materials
Abstract:A commercial AA2519 alloy with a chemical composition of Al-5.64Cu-0.33Mn-0.23Mg-0.15Zr (in wt. %) was subjected to two-step thermomechanical...
278
Authors: Olga I. Bylya, R.A. Vasin, Paul L. Blackwell
Chapter 5: Industrial Application
Abstract:Much work has been carried out in understanding the mechanics of superplasticity (SP). Some of the present challenges in SP forming revolve...
468