Paper Title:
Superplastic Forming Properties of TIMETAL®54M (Ti-5%Al-4%V-0.6%Mo-0.4%Fe) Sheets
  Abstract

Superplastic forming (SPF) properties of TIMETAL54M (Ti-5Al-4V-0.6Mo-0.4Fe, or Ti-54M) sheet were investigated. A total elongation of Ti-54M exceeds 500% at temperatures between 750°C and 850°C at a strain rate of 10-3/S. Values of strain rate sensitivity (m-value) measured by jump strain rate tests are 0.45 ~0.6 in a temperature range of 730°C to 900°C at a strain arte of 5 x 10-4/S or 1 x 10-4/S. Flow stress of the alloy is 20 ~ 40% lower than that of Ti-6Al-4V (Ti-64) mill annealed sheet. The observation of microstructure after the tests revealed the indication of grain boundary sliding in a wide range of temperatures and strain rates.

  Info
Periodical
Edited by
Daniel G. Sanders
Pages
311-317
DOI
10.4028/www.scientific.net/KEM.433.311
Citation
Y. Kosaka, P. Gudipati, "Superplastic Forming Properties of TIMETAL®54M (Ti-5%Al-4%V-0.6%Mo-0.4%Fe) Sheets", Key Engineering Materials, Vol. 433, pp. 311-317, 2010
Online since
March 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Vera G. Sursaeva
Abstract:When a bicrystal or polycrystal are subjected to a change in temperature, the individual responses of the two adjoining crystals may differ...
801
Authors: Yoshifumi Iwasaki, Yuji Nakasone
Abstract:The present study has investigated plasticity-induced martensitic phase transformation in fatigue of unnotched SUS304 plates. Martensitic...
1152
Authors: Rimma Lapovok
Abstract:Equal Channel Angular Extrusion (ECAE) has become a very popular tool for studying the evolution of microstructure and properties under...
37
Authors: Xi Shan Xie, Jian Xin Dong, Mai Cang Zhang
Abstract:Inconel 718(Ni-19Cr-18Fe-3Mo-5Nb-1Ti-0.5Al) nickel-base superalloy strengthened mainly by Ni3Nb type γ″ and partially by Ni3Al type γ′...
262
Authors: Jong Hoon Yoon, Ho Sung Lee, Yeng Moo Yi, Joon Tae Yoo
IV. Design, Testing and Modelling
Abstract:In the current study, the finite element simulation for superplastic blow forming of a toroidal Ti-6Al-4V fuel tank is discussed. 3 types of...
240