Paper Title:
Effect of Substrate Heating in Thickness Correction of Quartz Crystal Wafer by Plasma Chemical Vaporization Machining
  Abstract

Quartz resonator is a very important device to generate a clock frequency for information and telecommunication system. Improvement of the productivity of the quartz resonator is always required because huge amounts of resonator are demanded to install to various electronic devices. Resonance frequency of the quartz resonator is determined by the thickness of the quartz crystal wafer. Therefore it is essential to uniform the thickness distribution of the quartz crystal wafer with nanometric level. We propose the improvement process of the thickness distribution of the quartz crystal wafer by numerically controlled correction using atmospheric pressure plasma which is noncontact and chemical removal technique. We have already succeeded in obtaining a thickness uniformity of 33.1nm within 2 min in the thickness correction of an AT-cut quartz crystal wafer with an area of 24 mm × 24 mm. However, increase of removal rate and improvement of correction accuracy are required for industrial manufacturing. Heating effects of the quartz crystal wafer in the removal rate and the correction accuracy were investigated. The heating of the substrate and compensate of the scanning speed of the worktable in accordance with the variation of the surface temperature enabled an increase of 50% in removal rate and 10-nanometric-level accuracy in correction of the thickness distribution of the quartz crystal wafer.

  Info
Periodical
Key Engineering Materials (Volumes 447-448)
Edited by
Jianhong Zhao, Masanori Kunieda, Guilin Yang and Xue-Ming Yuan
Pages
218-222
DOI
10.4028/www.scientific.net/KEM.447-448.218
Citation
M. Ueda, M. Shibahara, N. Zettsu, K. Yamamura, "Effect of Substrate Heating in Thickness Correction of Quartz Crystal Wafer by Plasma Chemical Vaporization Machining", Key Engineering Materials, Vols. 447-448, pp. 218-222, 2010
Online since
September 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Shang Gao, Ren Ke Kang, Dong Ming Guo, Quan Sheng Huang
Abstract:Using the cross-section angle polishing microscopy, the subsurface damage of the silicon wafers (100) ground by the diamond wheels with...
113
Authors: Wen Jie Tian, Hong Yun Zhou, You Bin Sun, Guang Li
Chapter 1: Advanced Structure, Construction Materials and Dynamic Engineering
Abstract:Based on the analysis of stress distribution in the medium of semi-infinite anisotropic thin medium plates with centralized forces, in the...
149
Authors: Q. Humayun, U. Hashim
Abstract:The important role of reactive ion etching (RIE) technique is to etch the semiconductor surface directionally. The purpose of the current...
64