Paper Title:
Drilling of Titanium/CFRP/Aluminium Stacks
  Abstract

Following a review on the machinability of CFRP composites and multilayer stacks typically comprising metallic and composite material elements, the paper details experimental results when drilling 30 mm thick titanium/CFRP/aluminium workpiece stacks. Testing utilised a modified fractional factorial design based on an L18 Taguchi orthogonal array. This comprised four factors, three of which were at three levels and one at two levels and involved tool coating, cutting speed, feed rate and machining environment. Tools evaluated involved hardmetal and diamond coated carbide in addition to uncoated tungsten carbide drills. Response variables were principally tool wear and cutting force/torque with an end of test criteria of 300m flank wear. Peeling of the CVD diamond coating occurred within the first several holes drilled however this was not a limiting factor in terms of tool life. Principal damage occurred when drilling through the titanium (Ti-6Al-4V) rather than the aluminium (Al 7050) or CFRP (unidirectional “UD” laminates) sections. Best tool life/performance (310 drilled holes) was obtained with the more conventional uncoated carbide drills at lower cutting speed and feed rate. Typically thrust forces increased from 300 N for the first hole to ~2200 N for last hole drilled while torque values were generally below 600 N.cm for worn tools.

  Info
Periodical
Key Engineering Materials (Volumes 447-448)
Edited by
Jianhong Zhao, Masanori Kunieda, Guilin Yang and Xue-Ming Yuan
Pages
624-633
DOI
10.4028/www.scientific.net/KEM.447-448.624
Citation
I. Shyha, S. L. Soo, D. K. Aspinwall, S. Bradley, S. Dawson, C. J. Pretorius, "Drilling of Titanium/CFRP/Aluminium Stacks", Key Engineering Materials, Vols. 447-448, pp. 624-633, 2010
Online since
September 2010
Export
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yi Wan, Zhan Qiang Liu, Xing Ai
Abstract:Five-axis milling is widely used in machining of complex surfaces parts. Part quality and productivity are extremely affected by cutting...
2049
Authors: X.Y. Wang, S.Q. Pang, Q.X. Yu
Abstract:The aim of this work is to investigate the machinability of new coated carbide cutting tools that are named C7 plus coatings under turning of...
173
Authors: Jian Hua Liu, Yi Hua Feng, Lei Shi, Qing Yu Zhang
Abstract:Arc ion plating technique PVD ZrN coatings were deposited on YT15 cemented carbide. Microstructural and fundamental properties of the ZrN...
1089
Authors: Rao T. Sadasiva, K. Satyanarayana, Y. Praneeth, Anne Venu Gopal
Chapter 15: Meso/Micro Manufacturing Equipment and Processes
Abstract:Milling is the most widely applied machining process for producing flat surfaces and prismatic shapes. To minimize the process time and...
3147