Paper Title:
Thermal Stablility and Oxidation Resistance of CrAlSiN Nano-Structured Coatings Deposited by Lateral Rotating Cathode Arc
  Abstract

In this paper, CrAlSiN coatings are deposited by a lateral rotating cathode arc technique. The high temperature oxidation behaviors of these coatings are studied in ambient atmosphere at temperatures ranging from 800°C-1000°C for an hour. The ternary TiAlN coating is used as the benchmark in this study. The surface morphology and chemical composition of the coating samples before and after oxidation at different temperatures are analyzed by scanning electron microscopy (SEM) equipped by energy dispersive X-ray spectrometer (EDX), glow discharge optical spectrometry (GDOS) and X-ray diffraction (XRD). The CrAlSiN coatings show much better oxidation resistance than the TiAlN coatings. TiAlN starts to oxidize from 800oC and forms a complete surface oxide layer after oxidation at 1000oC for an hour. However, CrAlSiN shows a relatively good oxidation resistance below 1000oC and only is oxidized to form a thin oxide scale with a thickness of 0.3 µm at 1000oC for one hour. It is found that the oxidation of both coatings is triggered from the surface metallic droplets generated by the arc deposition process.

  Info
Periodical
Key Engineering Materials (Volumes 447-448)
Edited by
Jianhong Zhao, Masanori Kunieda, Guilin Yang and Xue-Ming Yuan
Pages
725-729
DOI
10.4028/www.scientific.net/KEM.447-448.725
Citation
J. Y. Cheong, X. Z. Ding, B. K. Tay, X. T. Zeng, "Thermal Stablility and Oxidation Resistance of CrAlSiN Nano-Structured Coatings Deposited by Lateral Rotating Cathode Arc", Key Engineering Materials, Vols. 447-448, pp. 725-729, 2010
Online since
September 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: A. Trinchi, W. Wlodarski, Sandro Santucci, D. Di Claudio, Maurizio Passacantando, C. Cantalini, B. Rout, S.J. Ippolito, K. Kalantar-Zadeh, G. Sberveglieri
Abstract:The microstructural characterization of r.f. magnetron sputtered ZnO thin films deposited on 6H-SiC is presented with a comprehensive...
123
Authors: Ping Luan, Jian Sheng Xie, Jin Hua Li
Chapter 3: Surface, Subsurface, and Interface Phenomena
Abstract:Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films...
822
Authors: Jian Sheng Xie, Ping Luan, Jin Hua Li
Chapter 9: Composite Materials II
Abstract:Using magnetron sputtering technology, the CuInSi nanocomposite thin films were prepared by multilayer synthesized method. The structure of...
2770
Authors: Jian Sheng Xie, Jin Hua Li, Ping Luan
Chapter 2: Surface, Subsurface and Interface Phenomena
Abstract:Thin CuInSi films have been prepared by magnetron co-sputtering, and followed by annealing in N2 atmosphere at different...
302
Authors: Xiao Lei Qu, Jing Jin, Wei Min Shi, Yu Feng Qiu, Lu Huang, Ping Sheng Zhou, Wen Yun Dai
Chapter 12: Surface Engineering/Coatings
Abstract:A viscous Nickel (Ni) solution was applied on amorphous Si films by spin coating and its effect on the crystallization of amorphous Si films...
1765