Paper Title:
Corrosion Degradation of Pipeline Carbon Steels Subject to Geothermal Plant Conditions
  Abstract

The electrochemical behaviour of two carbon steels exposed to the acidic solutions and their resistance to hydrogen induced cracking (HIC) is evaluated in order to determine the effect of hydrogen damage on the failure process of the steels used in line pipe and casing at a geothermal plant. MethodologyApproach: Samples of two different steels, ASTM A-53 grade B (line pipe) and API L-80 (casing) were immersed during 96 hours in the electrolyte proposed by NACE to evaluate the susceptibility to HIC. Samples of the two steels embedded in non-conducting bakelite were exposed to potentiodynamic polarisation at room temperature using brines obtained from different wells at Cerro Prieto geothermal plant as electrolyte. Hardness tests were performed before and after the HIC test on samples in order to determine hardness changes induced by hydrogen penetration, as field results indicated embrittlement of the steels after 4 months of service. Findings: The steels, ASTM A-53 grade B and API L-80 did not present cracking sensitivity, as no cracks were observed in the tests specimens, although they showed an increase in hardness. The steels presented high corrosion rate in the brine media at room temperature (3.3 mm/year), which is expected to increase at high temperatures. Originality: This work revealed that carbon steels used at line pipes and casing at geothermal plants present high resistance to hydrogen induced cracking; however they corrode at high rates and present embrittlement. It is suggested that due to the high operation temperature the damage induced by hydrogen results in hardness increase but was not sufficient to crack development.

  Info
Periodical
Main Theme
Edited by
Alexander Balankin, José Martínez Trinidad and Orlando Susarrey Huerta
Pages
62-69
DOI
10.4028/www.scientific.net/KEM.449.62
Citation
C. Miranda-Herrera, I. Sauceda, J. González-Sánchez, N. Acuña-González, "Corrosion Degradation of Pipeline Carbon Steels Subject to Geothermal Plant Conditions", Key Engineering Materials, Vol. 449, pp. 62-69, 2010
Online since
September 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yong Jiang, Jian Ming Gong, Zheng Gang Yu, Dong Song Rong
Abstract:In this paper, mechanical performance test, slow strain rate test (SSRT) and optical microscopy analysis were employed in studying the effect...
34
Authors: Bing Ying Wang, Zhen Tong Sun
Abstract:Four different metal coatings of pure aluminum, aluminum zinc alloy, titanium, aluminum Titanium were prepared on the surface of X80 pipeline...
533
  | Authors: Maxim Yu. Matrosov, Oleg N. Sychev, Andrey M. Korchagin, Oleg P. Talanov
Chapter 2: New Materials, Special Forming Processes and Materials Characterization
Abstract:Based on physical metallurgy principles, specialists of Severstal and I. P. Bardin Institute developed chemical composition and manufacture...
106