Paper Title:
Finite Element Analysis of the Influence of Cutting Edge Radius on Mechanical-Thermal Distribution in High-Speed Cutting TiAl6v4
  Abstract

On the basis of analyzing the cutting edge structure and cutting edge radius measurement of high-speed insert, thermal - mechanical coupling finite element method (FEM) is used in this paper, to obtain the effect law of different cutting edge radius on the mechanical-thermal distribution of high-speed cutting TiAl6V4. At last, cutting experiments are carried out to verify FEM results. There is a clear exposition of the intrinsic reason why the cutting edge radius has influence on the mechanical -thermal distribution of high-speed cutting process. The results indicate that the experimental results have a good agreement with FEM; with the cutting edge radius increases, cutting force increases; cutting temperature is not monotonic, but there exists an optimum edge radius that makes temperature lowest; cutting edge changes the plastic flow of materials around tool tip and broaden plastic deformation zone. The cutting edge radius has a greater impact on equivalent stress.

  Info
Periodical
Edited by
Hun Guo, Zuo Dunwen, Hongli Xu, Chun Su, Chunjie Liu and Weidong Jin
Pages
295-300
DOI
10.4028/www.scientific.net/KEM.458.295
Citation
Y. H. Fan, M. L. Zheng, S. C. Yang, W. Zhang, D. Q. Zhang, "Finite Element Analysis of the Influence of Cutting Edge Radius on Mechanical-Thermal Distribution in High-Speed Cutting TiAl6v4", Key Engineering Materials, Vol. 458, pp. 295-300, 2011
Online since
December 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Toshiyuki Obikawa, Ali Basti, Jun Shinozuka
Abstract:The finite difference method was applied to simulate temperature distribution in the workpiece, cutting zone and tool in the orthogonal...
681
Authors: Wen Jun Deng, C. Li, Wei Xia, X.Z. Wei
Abstract:A coupled thermo-mechanical model of plane-strain orthogonal metal cutting including burr formation is presented using the commercial finite...
71
Authors: B.J. Xiao, Cheng Yong Wang, Ying Ning Hu, Yue Xian Song
Abstract:A two-dimensional orthogonal thermal-mechanical finite element model by Deform2D finite element analysis software is established in the...
590
Authors: Mu Lan Wang, Yong Feng, Xiao Xia Li, Bao Sheng Wang
Chapter 4: Fluid Mechanics and Thermodynamics
Abstract:An experimental system used for temperature measurement is designed by the K-type thermocouple thermometry to achieve a direct measurement of...
594