Paper Title:
Thermal Cycling Induced Crack Nucleation and Propagation in Thermal Barrier Coating System
  Abstract

Failure of thermal barrier coating (TBC) system is associated with the morphological imperfection of thermally grown oxide (TGO) layer. The objective of this work is to numerically investigate the crack nucleation and propagation in TBC system upon thermal cycling based on a cohesive zone model, in which TGO thickness imperfection effect is incorporated. The results show that TGO/BC (bond coat) interface is subjected to high tensile stress in the vicinity of TGO thickness imperfection during thermal cycling, thereby inducing crack nucleation. Owing to the plastic deformation of BC, fracture behavior of TGO/BC interface is related to BC yield strength for a typical thermal growth rate of TGO. Furthermore, the embedded oxide in BC could be also ruptured as a result of the increasing transverse stress, which will lead to the coalescence of adjacent cracks.

  Info
Periodical
Key Engineering Materials (Volumes 462-463)
Edited by
Ahmad Kamal Ariffin, Shahrum Abdullah, Aidy Ali, Andanastuti Muchtar, Mariyam Jameelah Ghazali and Zainuddin Sajuri
Pages
383-388
DOI
10.4028/www.scientific.net/KEM.462-463.383
Citation
Y. L. Sun, W. X. Zhang, M. Tian, T. J. Wang, "Thermal Cycling Induced Crack Nucleation and Propagation in Thermal Barrier Coating System", Key Engineering Materials, Vols. 462-463, pp. 383-388, 2011
Online since
January 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Fu Lin Shang, Takayuki Kitamura
Abstract:Atomistic simulations using molecular dynamics (MD) method are conducted to check the conditions of the onset of fracture at the interface...
969
Authors: Zhi Yong Han, Huan Wang
Abstract:Considering the difference of 3 dimension interface topography unit, the distribution of residual stress in thermal barrier coating was...
964
Authors: Zhi Yong Han, Hua Zhang
Chapter 4: Engineering Mechanics
Abstract:Considering the thermally-growth oxide (TGO) that grows between top ceramic coating (TCC)and bond coat (BC) interface and surface morphology...
469
Authors: Jun Ru Yang, Gong Ling Chen, Li Li Zhang, Jing Sun
VI. Analytical and Numerical Methods for Materials Processing
Abstract:Based on the theoretical study on the tip stress intensity factor (SIF) of the crack normal to and dwelling on the interface, using the...
525
Authors: Widyastuti, Kusriantoko Parindra, Lilis Mariani, Hosta Ardhyananta, Sulistijono
Chapter 5: Surfaces, Coatings and Hardening of Materials for Industrial Application
Abstract:TBC (Thermal Barrier Coating) with YSZ-Al2O3/YSZ as top coat (TC) and MCrAlY alloy as bond coat (BC) marked as...
338