Paper Title:
Controlled Synthesis of Carbon Nanowalls for Carbon Channel Engineering
  Abstract

This study investigates the growth mechanisms of carbon nanowalls (CNWs), which are two-dimensional carbon structures that consist of stacked graphene sheets and that stand vertically on substrates. Factors that determine their morphological and electrical properties were studied using two plasma-enhanced chemical vapor deposition (PECVD) systems that permit the densities and energies of radicals and ions to be precisely controlled. For CNW growth using a C2F6/H2 plasma, the CNW growth rate decreased when the total pressure was increased from 13.3 to 80 Pa during growth. Raman spectroscopy and scanning electron microscopy revealed that the CNW crystallinity increases and the CNW density decreases with increasing total pressure. This is attributed to an increasing amount of H radicals in the growth ambient with increasing total pressure. During the initial stages of CNW growth using a multibeam PECVD system with CFx, hydrogen radicals, and Ar ions, CNWs were formed only for Ar+-ion fluxes of 3.3 to 3.8 A/cm2 and energies of 200 to 250 eV. Although attachment of CFx radicals and CNW growth require ion bombardment, if the flux or energy of ion bombardment is too high CNW growth will be inhibited due to etching and excessive carbon deposition. Semiconducting CNWs with n-type characteristics can be formed by adding N2 gas to the C2F6/H2 plasma. Furthermore, carrier concentrations of n-type CNWs can be controlled by nitrogen doping.

  Info
Periodical
Edited by
Seiichi Miyazaki and Hitoshi Tabata
Pages
85-91
DOI
10.4028/www.scientific.net/KEM.470.85
Citation
H. Kondo, M. Hori, W. Takeuchi, M. Hiramatsu, "Controlled Synthesis of Carbon Nanowalls for Carbon Channel Engineering", Key Engineering Materials, Vol. 470, pp. 85-91, 2011
Online since
February 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Wlodek Strupiński, Rafał Bożek, Jolanta Borysiuk, Kinga Kościewicz, Andrzej Wysmolek, Roman Stepniewski, Jacek M. Baranowski
Abstract:The so-called “growth” of graphene was performed using a horizontal chemical vapor deposition (CVD) hot-wall reactor. In-situ etching in the...
199
Authors: Ameer Al-Temimy, Christian Riedl, Ulrich Starke
Abstract:By carbon evaporation under ultrahigh vacuum (UHV) conditions, epitaxial graphene can be grown on SiC(0001) at significantly lower...
593
Authors: Sushant Sonde, Carmelo Vecchio, Filippo Giannazzo, Rositza Yakimova, Emanuele Rimini, Vito Raineri
Abstract:Local current transport across graphene/4H-SiC was studied with nanometric scale lateral resolution by Scanning Current Spectroscopy on both...
769
Authors: Scott G. Walton, Sandra C. Hernández, Mira Baraket, Virginia D. Wheeler, Luke O. Nyakiti, Rachael L. Myers-Ward, Charles R. Eddy, D. Kurt Gaskill
Chapter 4: Graphene
Abstract:In this work, the treatment of epitaxial graphene on SiC using electron beam generated plasmas produced in mixtures of argon and oxygen is...
657
Authors: Shoji Ushio, Yasunori Kutsuma, Arata Yoshii, Naoto Tamai, Noboru Ohtani, Tadaaki Kaneko
Chapter 4: Graphene
Abstract:We report a new approach to produce high quality epitaxial graphene based on the concept of controlling Si sublimation rate from SiC surface....
601