Paper Title:
Effect of Loading Concentration on the Electrical and Hardness Properties of MWCNT/Epoxy Nanocomposites
  Abstract

Carbon nanotubes have excellent mechanical and electrical properties, and are also a good reinforcement material for composites than conventional materials. The matrix used in this study was epoxy and reinforcement filler in multi-walled carbon nanotubes (MWCNTs). The different MWCNTs loading concentrations (0 ~ 10 wt. %) were added into the epoxy resin. The dispersion of MWCNTs in epoxy resin was conducted using high speed mixer through mechanical shearing mechanism. The mixture of epoxy/MWNTs suspension was poured into the mold and compression molding was conducted for fabrication of MWCNTs/epoxy nanocomposites. The electrical conductivity of nanocomposite by variation of CNTs concentration was measured by the four point probe. Dispersion state of CNTs in epoxy matrix was observed on fractured surface by scanning electron microscopic. Hardness of the composite was tested using the Dinamic Ultra Micro Hardness machine. Non conductive epoxy polymer becomes conductor as addition of CNTs.. Electrical conductivity of nanocomposite plates increased with increasing CNTs concentration. Agglomerations of CNTs were observed on fractured surfaces. This phenomenon due to CNTs which used in this study was at as produced state where no modification is being done on it. Long and entanglement of individual CNTs easily lead to agglomerations. Van de Wall’s force interactions between CNTs also contribute to the agglomerations of CNTs. Hardness of the composite increases with the CNTs loading concentrations until it reaches a maximum peak at the composition of 5wt% of CNTs but the hardness decreases rapidly with loading greater than 5wt% of CNTs.

  Info
Periodical
Key Engineering Materials (Volumes 471-472)
Edited by
S.M. Sapuan, F. Mustapha, D.L. Majid, Z. Leman, A.H.M. Ariff, M.K.A. Ariffin, M.Y.M. Zuhri, M.R. Ishak and J. Sahari
Pages
157-161
DOI
10.4028/www.scientific.net/KEM.471-472.157
Citation
R. N. Royan, A. B. Sulong, J. Sahari, "Effect of Loading Concentration on the Electrical and Hardness Properties of MWCNT/Epoxy Nanocomposites", Key Engineering Materials, Vols. 471-472, pp. 157-161, 2011
Online since
February 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Juan Zhou, Yong Ting Zheng, Shan Yi Du
Abstract:BN-AlN-TiB2 compound conductive ceramics from powder mixtures of BN, Al, and TiB2 was fabricated by self-propagating high temperature...
786
Authors: Marcelo Antunes, Vera Realinho, E. Solórzano, Miguel A. Rodríguez-Pérez, Jose A. de Saja, Jose Ignacio Velasco
Abstract:Carbon nanofibre-reinforced polypropylene nanocomposites containing from 5 to 20 wt.% of carbon nanofibres and a chemical blowing agent were...
996
Authors: Hai Yun Jin, Hui Cheng Shi, Bo He, Nai Kui Gao, Zeng Ren Peng
Abstract:AlN filled epoxy composites were fabricated. The microstructure of composites was observed by SEM. The thermal conductivity was also...
460
Authors: Afarin Bahrami, Z.A. Talib, W. Mahmood Mat Yunus, Kasra Behzad, Nayereh Soltani
Abstract:This study describes the preparation of polypyrrole multiwall carbon nanotube (PPy/MWNT) composites by in situ chemical oxidative...
50
Authors: Mi Dan Li, Yao Lu, Lu Lu Feng, Huan Niu, Ya Wen Kong
Chapter 2: Research on Materials,Mechanics and Technologies
Abstract:Composites made from phenolic resin are filled with conductive filler mixtures containing copper powders, natural graphite powders and carbon...
120